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Abstract— This work explores the use of topological tools for
achieving effective non-prehensile manipulation in cluttered,
constrained workspaces. In particular, it proposes the use of
persistent homology as a guiding principle in identifying the
appropriate non-prehensile actions, such as pushing, to clean a
cluttered space with a robotic arm so as to allow the retrieval
of a target object. Persistent homology enables the automatic
identification of connected components of blocking objects in
the space without the need for manual input or tuning of
parameters. The proposed algorithm uses this information
to push groups of cylindrical objects together and aims to
minimize the number of pushing actions needed to reach to
the target. Simulated experiments in a physics engine using a
model of the Baxter robot show that the proposed topology-
driven solution is achieving significantly higher success rate in
solving such constrained problems relatively to state-of-the-art
alternatives from the literature. It manages to keep the number
of pushing actions low, is computationally efficient and the
resulting decisions and motion appear natural for effectively
solving such tasks.

I. INTRODUCTION

In order to retrieve a target object from clutter, a robotic
arm may first need to relocate other objects that are blocking
access. Such a task appears often in applications ranging
from service robotics (e.g., taking out a can of soda from
the fridge) to logistics (e.g., retrieving an ordered product
from the shelf of a grocery store). In many cases, especially
in homes, the workspace is cluttered and unstructured. But
it can still allow a combination of planar, non-prehensile
pushes to clear blocking objects and prehensile grasping to
pick the target object. This paper focuses on making such
strategies for object retrieval more efficient so as to equip
robot assistants with this useful skill.

While there are methods for realizing this robotic skill
[1]–[3], human-level performance in terms of efficiency and
smooth, natural motion has yet to be achieved. When humans
perform such tasks, they often perform an implicit “object
grouping” so as simultaneously push multiple objects and
find the least number of pushes before the target can be
retrieved. Building on that observation, this work, explores
topological tools to systematically identify how objects can
be grouped into manageable clusters (connected components
in topological terms). Once the objects are grouped the
approach identifies pushing actions that are effective in clear-
ing the blocking objects. In particular, persistent homology
(PH) provides a persistence diagram for selecting clusters
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Fig. 1. (top) An example setup where a model of the Baxter robot and
a cluttered set of cylindrical objects are modeled in a physics engine. The
target object is highlighted and access to it is blocked by the white objects.
(bottom) A solution sequence computed by the proposed topology-driven
method. The arm rearranges the blocking objects in order to reach its target.

(connected components), in order to group objects that can
be pushed together in one action.

The dynamics of such pushes are rather complex. A robot
arm is usually not designed with push actions in mind.
Such operations are in general underactuated, non-prehensile
primitives that complicate the achievement of desirable end
positions for the objects. They involve complicated dynamics
as objects may collide each other. This work does not
aim to understand or model the dynamics of such pushing
operations over groups of objects. It shows, however, that
reasoning about the topology of the configuration space is
still helpful in this context and allows clustering objects that
can be relocated effectively under non-prehensile manipula-
tion. In other words, clusters of the objects given by PH can
be more reliably pushed together and result in fewer pushes
to solve such problems.

Two methods are presented here for selecting connected
components of blocking objects in such setups. (A) For
each configuration instance, the PH Informed Actions ap-
proach described in Algorithm 4 selects the closest connected
component to the arm, that is minimal, which persists in
the persistence diagram (taking into account the restrictions
imposed by the object and arm size). (B) The PH Informed
Search approach described in Algorithm 5 considers all
connected components that persist for different radii in
the persistence diagram. It builds a tree with nodes, each
representing a configuration of the space, and propagates
by performing push actions until it gets success or failure.
Finally, it searches for the path that leads to success and
minimizes the time for performing the pushing actions.

To the best of the authors’ knowledge, this is the first
application of these topological tools in this domain. Simu-



lated experiments using a physics engine and a model of the
Baxter robot show that the proposed topology-driven solution
is achieving significantly higher success rate in solving
cluttered problems in constrained, shelf-like workspaces. The
comparison points include randomized baselines as well
as alternatives from the literature. The proposed strategy
manages to keep the number of pushing actions low, executes
effective pushing operations given the physical modeling
of the engine, is computationally efficient, and produces
motions which appear natural for effectively solving such
tasks.

II. RELATED WORK

Many manipulation tasks, such as pick-and-place oper-
ations and object rearrangement , can be solved by using
prehensile actions, where the robot grasps one object at a
time. With relatively predictable movement of the objects, the
objective is primarily focused on minimizing the number of
grasps to fulfill the task [4]–[6] , or maximizing the number
of objects to pick within a given time limit [7] . Prehensile
manipulation, however, may require good knowledge of the
objects’ 3D shape or pose, which can be challenging in
cluttered setups.

For manipulation setups where it is difficult or slow
to perform grasping, non-prehensile actions are used for
reconfiguring multiple objects at a time, which enables
large-scale object manipulation [8], [9]. Pushing actions are
preferred in tasks, such as bin picking and sorting [10]–[12],
as they can be performed with smaller and simpler end-
effectors that can easily fit in a cluttered, constrained space.
In harder problems, pushing and grasping actions are used
interchangeably throughout the task [13], [14]. As the effect
of pushing is less predictable, there are efforts that focus on
better estimating the outcome of pushing actions [15]–[17].
This paper utilizes pushing actions and performs topological
reasoning to identify a group of objects, which can be pushed
simultaneously so as to clear the path for approaching a target
object to be retrieved.

Prior efforts in object retrieval under clutter have focused
on identifying which objects to relocate so as to enable a
collision-free path to reach the target object [18], [19]. To
improve the success rate of such tasks, human interaction
has been considered to supply a high-level plan, which
informs an ordered sequence of objects and approximate goal
positions [3]. A fast kinodynamic planner that takes advan-
tage of dynamic, non-prehensile actions has been proposed
without the assumption of quasi-static interactions [20]. The
method proposed in this paper utilizes persistent homology to
improve the efficiency of pushing, which outperforms some
of these prior efforts [3], [20] in terms of the number of
pushing actions and planning time. A similar problem relates
to pushing a target to the desired goal position [21], which
has been approached via learning an optimal policy from
visual input [22], computing effective manipulation states
and actions [23], or a value function based heuristic [2].

Topological reasoning has been more frequently applied
to robotics applications with high-dimensionality of configu-

ration space for high degree of freedom (DoF) manipulators.
Constraint manifolds are introduced to plan feasible paths

in configuration spaces with multiple constraints [24]–[26].
Topological techniques can also be deployed to verify path

non-existences [27], [28]. Persistent homology is used to
classify a class of trajectories with varying task-specific prop-
erties such as clearance of obstacles over the largest range
of thresholds [29] or path-connectedness [30]. Here, the
work utilizes persistent homology to automatically identify
connected components of blocking objects so as to maximize
the pushing efficiency.

III. PROBLEM SETUP AND NOTATION

Let W ⊂ R2 be a bounded polygonal region, where a
set of uniformly-shaped cylindrical movable obstacles O =
{o1, . . . , on} and a similarly shaped target object T reside.
A robotic arm is assumed to be able to reach with its
gripper g objects at any position in W . The arm is not able
to pick objects with overhand grasps or lift them due to
limited accessibility. The robot arm may access the interior
of W from one edge of ∂W . Collisions between the arm
and the boundary of W beyond that edge are not allowed.
In other words, the robot arm moves along a 2D plane
where the objects are located while respecting the geometric
constraints of the workspace. The robot geometry assumed
by the methods corresponds to a gripper g attached to a
cylindrical link representing the rest of the arm’s geometry.
Given the gripper’s pose s, the location of the link attached
to the gripper is fully specified. For the arm to be able to
reach the target T , the gripper must be able to grasp T and
the cylindrical link of the arm must be collision free with
all of the movable obstacles and the workspace boundary.
In the accompanying experiments, the robot is actually a
7-dim. articulated Baxter robotic arm. The part of the arm
inside the workspace is always contained by a cylindrical
approximation considered by the proposed methods. The
objective is for the robotic arm to reach and grasp the target
T , which may require moving some of the obstacles in O.

T

Fig. 2. Illustration of the
workspace W and the robot
arm for the same configuration
as in Fig. 1, where T is the
target object.

The configuration X is
defined as X = {P, pT , s} =
{(p1, . . . , pn), pT , s} ∈
Wn+1 × SE(2), where pi ∈ W
defines the position of oi, i.e.,
the coordinates of oi’s centroid,
pT defines the position of
T , and s is the position and
orientation of the robot’s
gripper g. X [oi] = pi indicates
that the object oi assumes the

position pi, X [T ] = pT means that T is at position pT
while X [g] = s indicates that the gripper g of the robot is at
pose s ∈ SE(2). Define as V (p) the subset of W occupied
by an object at position p.

A configuration X is feasible if no object-object collisions
occurs, i.e., X is feasible if ∀i, j ∈ [1, n], i ̸= j : V (X [oi])∩
V (X [oj ]) = ∅ and ∀i ∈ [1, n] : V (X [oi]) ∩ V (X [T ]) = ∅.
Given a feasible configuration X , the arm can push multiple



objects at a time. For an object oi in the set I ⊂ O of objects
affected by the push, the object is relocated from its current
position pi = X [oi] to a new position p′i, giving rise to a new
configuration X ′, where X ′[oi] = p′i and ∀j ∈ [1, n], oj /∈
I : X ′[oj ] = X [oj ]. The arm’s motion results in continuous
paths π : [0, 1]→W with π(0) = c and π(1) = c′, where c
and c′ are positions inW obtained by the methods described
below.
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CCc

Π(X )

Fig. 3. (left) The path region Π(X ). (right) Connected components in
Π(X ) using r = 0.086, where CCc = CCc(X , r) is the closest connected
component to the gripper.
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Fig. 4. Path region Π(X ) with an incidence angle ϕ, where w is the
width of the arm and ℓ is the straight line, which passes through (0, 0) and
below X [T ] = pT with d(p, ℓ) = w.

IV. METHOD

Persistent homology is a tool from algebraic topology that
computes topological features of a space at different spatial
resolutions. It has been extensively applied for topological
analysis of point-cloud data (e.g., see [31] and [32]). Given
a collection of points, consider growing balls of radius r
centered at each point. As the balls expand, track the unions
of all these balls as they overlap each other given a 1-
parameter family of spaces. For each radius r, one can build
a Vietoris–Rips complex (abstract simplicial complex) using
the information given by the intersection of the r-balls (for
more details see [32]). In this setting, persistent homology
is the homology of the Vietoris–Rips complex as a function
of r. Intuitively, persistent homology counts the number of
connected components (clusters in our setup) and holes of
various dimensions and keeps track of how they change with
parameters.

Since we are interested in computing connected compo-
nents that persist, we focus on the zeroth-homology (zero
dimensional homology) and use the field Z2 as a coeffi-
cient for the homology. As the radius r increases, the zero
dimensional persistent homology records when the ball in
one connected component first intersects a ball of a different
connected component, merging both connected components
in one, see Figs. 5 and 6.
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Fig. 5. (left) The subset of objects in the path region Π(X ) for the problem
in Fig. 1. Blue ones are obstacles and the orange one (rightmost point) is
the target T . (right) The persistence diagram for the points shown in the
left figure.
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Fig. 6. Examples of connected components that persist obtained for
four different radii r in the persistence diagram in Fig. 5. (upper-left) For
r = 0.064, there are 6 different connected components shown by different
markers. (upper-right) For r = 0.086, there are 4 connected components.
(bottom-left) For r = 0.121, two connected components. (bottom-right)
Only one connected component (it contains all points) for r ≥ 0.14.

A. Proposed Approach for Non-Prehensile Manipulation

Given a target T ∈ O, we can define a region Π(X ) ⊂ W
smaller than the workspace where we use persistent ho-
mology to find connected components and perform pushing
actions. We denote Π(X ) as the path region, where the robot
arm will push the obstacles to clean the path to the target. The
shape and size of Π(X ) depends on the boundary of W and
the width w of the robot arm. Since W is rectangular shelf,
hence it is enough to use N ⊂ W and S ⊂ W (the parallel
walls of the shelf) to describe Π(X ) by using Algorithm 1
and the ideas shown in Figs. 3 and 4.

Fix an orientation of the shelf where the axis x corre-
sponds to the depth of the shelf and the axis y is aligned
with the width of shelf with S in y = 0 and N in y = ws,
where ws is the width of the shelf. When the Euclidean
distance between X [T ] = pT and S ∪ N is greater than
w, d(pT , S ∪ N) > w, Π(X ) is a rectangle given by the
points (X [g]x,X [T ]y −w) and (X [T ]x,X [T ]y +w), where
X [T ] = (X [T ]x,X [T ]y) and X [g] = (X [g]x,X [g]y). See
Fig. 3 for an illustration.



For the case where d(pT , S ∪ N) ≤ w, the path region
Π(X ) has to have an incidence angle ϕ with respect to S or
N , the closest to pT . Without loss of generality, assume that
d(pT , N) < w, then ϕ is the acute angle between y = ws and
straight line ℓ that passed through (0, 0) with d(pT , ℓ) = w,
such that X [T ] is above ℓ. See Figs. 4 and 8. We use the
planar rotation matrix R−ϕ to rotate W to obtain a rotated
path region R−ϕ(Π(X )), such that it is analogous to the
rectangle found for the case d(pT , S ∪N) > w.

Algorithm 1: Path Region(X )
1 Π(X )← ∅
2 if d(p, S ∪N) > w then
3 for o ∈ Ob do
4 if X [T ]y − w ≤ X [o]y ≤ X [T ]y + w and

X [g]x ≤ X [o]x < X [T ]x then
5 Π(X )← o
6 else
7 for o ∈ Ob do
8 if (R−ϕX [T ]T )y − w ≤ (R−ϕX [o]T )y,
9 (R−ϕX [o]T )y ≤ (R−ϕX [T ]T )y + w,

10 (R−ϕX [g]T )x ≤ (R−ϕX [o]T )x,
11 and (R−ϕX [o]T )x < (R−ϕX [T ]T )x then
12 Π(X )← o
13 return Π(X )

Let CC(X , r) be the collection of connected components
for the radius r > 0 inside of Π(X ). We use the software
Ripser [33] to find the zero dimensional persistent homology,
and then to extract the connected component and its gener-
ators. For our setting, we only need the closest connected
component, CC(X , r)c, to the position of the gripper of the
robot arm X [g], since the arm will try to push all obstacles
in CC(X , r)c to the outside of Π(X ). Such manipulation of
objects is non-prehensile, so it is not guaranteed that the new
arrangement X of O will preserve all connected components
in Π(X ).

Now, we compute the circumscribed rectangle, R(X , r),
of CC(X , r)c (the smallest rectangle that contains CC(X , r)c,
such that the sides of R(X , r) are parallel to the x and y
axes). We use it to plan the pushing actions to move all
obstacles CC(X , r)c with one single action. Algorithm 2
CRCCC (Circumscribed Rectangle of the Closest Connected
Components) describes this procedure.

Algorithm 2: CRCCC(X , r)
1 Π(X )← PathRegion(X )
2 CC(X , r)← Ripser(Π(X ), r, dim = 0)
3 CC(X , r)c ← ClosestSet(CC(X , r), s)
4 R(X , r)← CircumscribedRectangle(CC(X , r)c)
5 return R(X , r)

With the circumscribed rectangle of the closest connected
components R(X , r) the arm will push the region described
by R(X , r) either to up or down. It depends on the location
of R(X , r) relative to the path region Π(X ), if the y
coordinate of the centroid of R(X , r), cR(X ,r)y , is higher
than the y coordinate of the centroid of Π(X ), cΠ(X )y . This
will decide whether the arm will do a sweeping movement
from the bottom of R(X , r) to top until the arm reaches

Fig. 7. Sequence of pushing actions, where the selected radius rm =
0.086 for the first action is the minimal of R = Rν,h for ν = 0.015 and
h = 0.08. Such radius rm produces the connected components described
in Fig. 6 with r = 0.086.

N , the north boundary of Π(X ). The opposite is executed if
cR(X ,r)y < cΠ(X )y . For the case where cR(X ,r)y = cΠ(X )y

perform the same analysis with cR(X ,r)y and the y coordinate
of the centroid of W , cWy . See Algorithm 3 for details.

Algorithm 3: Pushing Actions(X , r)
1 R(X , r)← CRCCC(X , r)
2 if cR(X ,r)y > cΠ(X )y then
3 SweepingBottomToTop()
4 else
5 if cR(X ,r)y < cΠ(X )y then
6 SweepingTopToBottom()
7 else
8 if cR(X ,r)y ≤ cWy then
9 SweepingTopToBottom()

10 else
11 SweepingBottomToTop()
12 X ← UpdateConfiguration()
13 t← ActionsTime()
14 return (X , t)

Up this point we have computed everything for a given
radius r. We use the persistence diagram to select the appro-
priate r in an informed manner. First, define the persistent
radius for a given value ν > 0 as a radius r where one or
more connected components die. Between r and r + ν the
number of connected components remains the same, in other
words the connected components persist. Let Rν be the set of
all persistent radii for a given value ν > 0. In the persistence
diagram in Fig. 5, R0.015 = {0.064, 0.086, 0.121, 0.14}.
Note that, Rh is not empty since the radius where the last
connected component dies belongs to Rν .

For our setup, ν is considered as the margin of error for the
pushing action when the arm is moving a whole connected
component outside the path region Π(X ).

Observe that Rν may contain small radii such that the
gripper cannot move between two connected components,
hence we only consider persistent radii greater than h,
the number given by 110% of width of the gripper (10%
more to consider imprecision) plus two times the radius of
the objects. Define R(X ) = Rν,h(X ) as the collection of
persistent radii greater than h for a configuration space X .
For example, in the persistence diagram of Fig. 5, Rν,h(X ) =
{0.086, 0.121, 0.14} for ν = 0.015 and h = 0.08.



Fig. 8. Sequence of pushing actions with angle ϕ = 0.709, where the
selected radius for the first action is rm = 0.091 with ν = 0.015 and
h = 0.08.

The simplest approach to solve the reaching through
clutter problem is to select rm as the minimum element of
R(X ) for each configuration space after each pushing action.
See Algorithm 4 for the steps.

Algorithm 4: PH Informed Actions(X 0, ν, h)
1 X ← X 0

2 while Π(X ) is not empty do
3 D0 ← Ripser(Π(X ), dim = 0)
4 \\ 0d persistence diagram
5 R(X )← SetOfPersistentRadii(D0, ν, h)
6 rm ← MinimumElement(R(X ))
7 X ′ ← PushingActions(X , rm)
8 if X ′ = X then
9 label X failure

Another approach to the problem is to use not only rm but
all radii in Rν,h(X ) for a configuration space X . Specifically,
it is possible to build a tree with nodes corresponding to
configurations in X and propagate it by performing the
push action for each radius in Rν,h(X ). The propagation
is performed until it achieves success or failure. Finally, it
searches for the path that leads to success and minimizes
time for performing the pushing actions as in Algorithm 5.

V. EXPERIMENTS

Experiments were run on a Ubuntu workstation with Intel
Core i5-8259U 3.8Ghz 16GB RAM. Gazebo [34] was used
for simulating the task execution and MoveIt [35] was used
for forming motion planning queries to the Bi-EST planner
[36] in OMPL [37].

For the comparison experiments of the GRTC-Heuristic,
a simplified version of the algorithm in [3] was used that

Algorithm 5: PH Informed Search(X 0, ν, h)
1 tree ← {nodes = {X 0}, ∅}
2 Q← {X 0}
3 while Q ̸= ∅ do
4 Q′ ← ∅
5 for X ∈ Q do
6 if Π(X ) = ∅ then
7 label X success continue
8 D0 ← Ripser(Π(X ), dim = 0)
9 R(X )← SetOfPersistentRadii(D0, ν, h)

10 for r ∈ R(X ) do
11 (Xnew, tnew)← PushActions(X , r)
12 if X = Xnew then
13 label X fail continue
14 tree.nodes = tree.nodes∪{Xnew}
15 tree.edges = tree.edges∪{(X ,Xnew), t}
16 Q′ = Q′ ∪ {Xnew}
17 Q← Q′

18 path ← ShortestSuccessfulPath(tree)

pushes cylinders in a straight line to their goal region.
The straight pushes are generated using a kinematic motion
planner. This varies from the original GRTC-Heuristic, which
uses a kinodynamic motion planner to randomly sample push
actions to get the cylinder into a goal region.

We also run experiments using a version of the algorithm
PH Informed Actions 4 where we remove the persistent
homology information. More specifically, the lines 3-6 are
changed by rm ← 0.01, that is, an algorithm that does not
use persistent homology and does not group obstacles. We
denote this algorithm by OOA (one by one action). The
idea is to compare the statistical difference between non-
prehensile manipulation without grouping the obstacles and
the PH informed actions.

For all methods, an overall planning time threshold of
300 seconds was set. If a method exceeds this threshold, it
exits and returns a failure to retrieve the assigned object. To
evaluate performance of the proposed algorithms we conduct
121 experiments: one manually designed (in Fig. 1); 10
instances from a prior work [3]; 10 randomly generated
instances that are simple (with only 4 objects such that all
are far from the wall); and 100 random instances where the
target object is always behind the obstacles and deep in the
shelf. Some scenes are presented in Fig. 9.

Fig. 10 summarizes the results of the experiments for
the scenes with three obstacles (easy case, see Fig. 9). We
have decided to compare all algorithms with a less cluttered
environment in order to increase the success rate of the
GRTC-Heuristic. The overall success rate is high as expected.
The planning time for GRTC-Heuristic, however, is still high
since it samples points to perform the pushing action.

The comparison results with the scenes provided in related
work [3] is shown in Fig. 11. The success rate for GRTC-
Heuristic is low and it agrees with the experiments shown
in the related work [3]. Note that the number of actions for
the algorithm OOA may be high but it eventually achieves
success. When the number of actions is equal between PHIA
and OOA, it is possible to see that the planning time for
PHIA is slightly higher than OOA. The reason behind this



Fig. 9. From left to right: (first) simple case number 1; (second) simple
case number 7; (third) S1 case from [3]; (forth) S7 case from [3]; (fifth)
random experiment number 3; (sixth) random experiment number 32.

difference is the computation time to perform the topological
data analysis. Nevertheless, when the number of actions is
different between PHIA and OOA, the planning time for
OOA increases since for each configuration X it has to find
the closest obstacle to be pushed away from the path region
Π(X ).

The results from the 100 random scenes shown in Fig.
12 further confirm the conclusions presented in previous
paragraphs. The average of actions proposed by GRTC-
heuristic is shown only for the successful cases. Observe
that the average number of actions performed by PHIS is
lower than the other methods. This comes, however, with a
significant increase in the planning time but not enough to
pass the planning time of the GRTC-heuristic. In summary,
the conclusion we can draw from the experiments is that
PHIA has the best planning time and PHIS is the best in
terms of number of actions.
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Fig. 10. Ten simulations examples for the simple case where the number
of objects is four, see top row of Fig. 9.

VI. CONCLUSION AND FUTURE WORK

In this study, we presented an application of topological
data analysis for non-prehensile manipulations in clutter. Our
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Fig. 11. Ten simulation examples from a prior work [3]. Execution time
is always zero when the planning time reaches 300s.
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Fig. 12. One hundred random cases, where each bar represents the average
of the 100 random instances for each algorithm.

simulated experiments show that the algorithms based on
persistent homology have higher success and are faster in
finding solutions than the baselines and alternatives from
the literature. The experiments indicate that the topological
data analysis is cheaper to compute. Its use did not notably
increase planning time. Instead, it decreased planning time
by reducing the number of actions needed.

The success of the experiments motivates further explo-
ration of the topological method for non-prehensile manip-
ulation. For instance, we simplified the problem by consid-
ering objects of cylindrical shape for experiments; however,
the framework can be applied to more general objects given
further analysis. It is straightforward to see that the persistent
homology approach developed in this paper can be readily
applied to objects of different shapes and sizes; it will be
interesting to explore how our algorithm adapt to different
object shape distributions. Because our approach has very
fast planning time, it would also be very interesting to
develop it to enable continuous decision making, instead of
taking step-by-step actions.

Follow up work focuses on how to realize the proposed
framework on a real Baxter robot. This calls for consideration
of uncertainty that may arise from many sources including
perception and robot motion. Since the persistent connected
components are robust and can be described by the parameter
ν, the approach is promising for planning pushing actions
when the uncertainty of the pose of the objects is high but
bounded. Different types of manipulations may be useful to
consider as well, such as pick and place actions to separate
highly dense clusters of objects.
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