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Abstract. Integrated task and motion planning problems describe a multi-modal
state space, which is often abstracted as a set of smooth manifolds that are con-
nected via sets of transitions states. One approach to solving such problems is to
sample reachable states in each of the manifolds, while simultaneously sampling
transition states. Prior work has shown that in order to achieve asymptotically
optimal (AO) solutions for such piecewise-smooth task planning problems, it is
sufficient to double the connection radius required for AO sampling-based mo-
tion planning. This was shown under the assumption that the transition sets them-
selves are smooth. The current work builds upon this result and demonstrates
that it is sufficient to use the same connection radius as for standard AO motion
planning. Furthermore, the current work studies the case that the transition sets
are non-smooth boundary points of the valid state space, which is frequently the
case in practice, such as when a gripper grasps an object. This paper generalizes
the notion of clearance that is typically assumed in motion and task planning to
include such individual, potentially non-smooth transition states. It is shown that
asymptotic optimality is retained under this generalized regime.

1 Motivation

Fig. 1. A multi-modal plan-
ning problem where the robot
can perform sequences of
continuous motions and dis-
crete actions to achieve a tar-
get arrangement.

Integrated task and motion planning (TAMP) corresponds
to simultaneously searching for continuous motions and
discrete sequences of actions which resolve the target
task when combined. Consider the motivational exam-
ple of prehensile manipulation planning as in Fig. 1,
where a robotic arm must plan both how to move its
joints and compute a sequence of discrete grasps and
placements. Efficiently solving TAMP problems empow-
ers robots to manipulate objects in the real-world once
perception pipelines have provided the location of the de-
tected objects.

Many asymptotically optimal (AO) algorithms for
motion planning such as PRM∗, RRT∗, FMT∗ [13, 11], have
existed for some time now and high level task planning is
typically done with an informed tree search. Integrated TAMP, however, is more chal-
lenging than its two constituent problems as different task primitives, referred to as task
modes, often correspond to different configuration spaces of possibly varying dimen-
sionality. Transitioning between different task modes requires sampling the boundaries



Fig. 2. (Left:) A toy problem with a gripper free to move vertically (along x), and close its fingers
(expressed by the g axis). A configuration that touches an object between its fingers lies at the
non-differentiable boundary, which is the apex of the triangle in the g-x graph. (Right:) A task
planning problem involving picking the green object, and placing it in the blue region.

between them with a specialized subroutine that is task dependent. For instance, in the
case of manipulation planning, sampling the boundary of modes corresponds to iden-
tifying different grasps or placements of an object, which, even for simple cases, is
not necessarily smooth (see Fig. 2 left). This violates assumptions typically made in
sampling-based planning literature [13, 11, 25].

Early work in manipulation TAMP focused on modeling the search space [1, 15].
Recent notable efforts [8] proposed integrated TAMP solutions via multi-modal search
strategies, which construct sampling-based roadmaps over individual modes. The key
idea constructs an incremental multi-modal PRM [9] over a search tree in the space
of task modes. Symbolic planning has also been incorporated into TAMP using action
predicates [7], incremental constraints [3], and more recently in an inside-out approach
by devising a specialized hybrid sampler [23]. The mentioned approaches [8, 9, 7, 23,
3] have been shown to be probabilistically complete, but not necessarily AO.

Other problem instances, such as non-prehensile manipulation [5], or alternative
solution frameworks, such as constrained optimization formulations [24], and hybrid
approaches [10] using answer set programming have also been studied. There are also
hierarchical search strategies, which at a low-level call time-budgeted motion planning
subroutines that guide the search over viable actions [12]. Subsequently, application
of such compositional techniques [18, 4, 20, 19], that perform task planning using se-
quences of motion plans, were used in domains of manipulation and rearrangement.

Of specific interest to the current work is the FOBT algorithm [25], which was de-
signed for piecewise-analytic task planning domains, using a PRM∗-like motion planner.
Notably, it argued an AO TAMP solution for a roadmap connection radius twice of what
was argued for motion planning [13] A contribution of this work is to demonstrate that
previous algorithms [25, 9, 18] can be argued to be AO without inflating the connection
radius. The key insight is that the AO properties of the motion planning roadmaps can
be extended to the TAMP domain under a specific set of identified conditions.

Though not a focus in the current work, the arguments presented here should hold
for near-optimal roadmaps [22, 21] in the interior of orbits, assuming appropriate ra-
dius [21] is chosen for transition connections. .

A standard assumption in the sampling-based planning is the existence of clearance,
i.e., minimum distance from obstacles. This can be violated in task planning, as shown
in Fig. 2 (left), where a target grasp lies on a non-differentiable boundary point with
zero-clearance. Another contribution of the current work is to model what happens in
such non-smooth boundaries by extending the definition of robust convergence [11, 13].
It is also shown that such countable singular points do not affect the AO properties of
integrated task and motion planning.
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2 Integrated Task and Motion Planning

This section first defines useful terms and notations, then outlines a general TAMP algo-
rithm ALGO that will be analyzed in later sections.
C-space abstraction: A robotic system is describable by a configuration q in a d-
dimensional configuration space C ⊂ Rd. The robot geometries exist in a workspace
W ⊂ R3, part of which is occupied by obstacles. This gives rise to an open subset
Cfree ⊂ C of the configuration space, which does not result in collisions with obstacles,
and the complement obstacle subset Cobs = C/Cfree. The boundary of Cfree is denoted
by ∂Cfree, and Cfree denotes its closure, i.e., Cfree and its boundary.
Paths: A parameterized continuous curve π in Cfree is used to denote valid paths of the
robot as π : [0, 1] → Cfree. A path from q0 to q1 in Cfree is denotes as πq0→q1 such
that π(0) = q0 and π(1) = q1. Let P be the set of all valid paths. Then, the path cost
is defined as a mapping C : P → R+, which returns a positive measure of a path. The
current work considers Euclidean arc-length cost, which is Lipschitz continuous.
Modes: This work adopts the language of prior work for task planning [25, 9] and de-
fine a finite set of modes M = {M0,M1, ...,Mk}, which correspond to different
operational constraints of the robot for different task components. The set of all possi-
ble configurations within a given mode is denoted as CMi ; thus, C = ∪Mi∈MCMi .
Initially, the discussion will restrict each CMi to be analytic with smooth boundaries,
but this assumption will be later waived in Section 5.
Orbits: Dimensionality reducing constraints force CMi ⊂ RdMi to be a lower di-
mensional manifold compared to C, i.e., dMi < d. This arises when the task requires
the robot to be constrained for some of its degrees of freedom. Within these modes,
define an orbit OMi

(x) as a maximal, path-connected, subset of CMi , which contains
configurations x ∈ CMi . Often in manipulation planning, orbits of a modeMi are non-
overlapping subsets of a robot’s CMi corresponding to a specific grasp for the grasped
object and specific placement of the non-grasped objects.
Transitions: In manipulation planning, the configurations where the robot just grasped
or placed an object lie on the border of two modes (two specific orbits of those modes).
These configurations at the intersection of two orbits, are called transition states. For-
mally, a configuration t ∈ Cfree is a transition state if t ∈ ∂OMi

∩ ∂OMj
for i 6= j.

TAMP paths: For a (non-trivial) task planning problem with a starting configuration of
qs and goal configuration of qg a feasible solution path will traverse multiple orbits
over a transition sequence T = (ti)

M
i=1 of length M . A feasible TAMP path to a task

planning query is denoted as Π =
⊕M

i=0 πqi→qi+1
, qi ∈ (qs, T, qg), where

⊕
denotes

path concatenation. The cost C(Π) of such a path is taken to be the sum of the costs
of paths being concatenated. This formulation implies that traversing a transition has
zero (or constant) cost. Such costs are ultimately domain dependent, and cases where
the cost function is not locally smooth over transition manifolds are not considered
in the current work. The optimal path is denoted as Π∗, and the transition sequence
that it traverses as T ∗. Some additional notation will be used for the analysis of orbital
roadmap construction: Define Bb(q) ∈ Rd as an open d-dim. hyperball centered at
q with radius b. Let µ denote the measure of the C space, which corresponds to the
Lebesgue measure (generalized notion of volume). Denote the measure of a ball of
radius one as µ1, and n as the number of samples in an orbit.
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2.1 Asymptotic optimality of Sampling-based Algorithms

This work focuses on algorithms that build roadmaps similar to random geometric
graphs (RGG) [17] via sampling. It has been shown that sampling-based roadmaps in-
herit properties of the underlying RGGs [22].

Definition 1 (Roadmap). A roadmap is defined as a graph Gn(Vn, En), where Vn cor-
responds to the n points of a sampling sequence Xn. Edges e(u, v) between vertices
u, v ∈ Vn are added in the edge set En, when:

a) ‖u, v‖ ≤ rn, where rn is the connection radius of the roadmap, and
b) if the geodesic path connecting u to v is collision free.

Traditional roadmap construction [14, 13] has focused on the interior of Cfree. Given
any start q0 and goal configuration q1 in the interior of Cfree, asymptotic optimality is
defined in terms of the optimal path (π∗) connecting q0 to q1.

Definition 2 (Asymptotically Optimal Motion Planning on Gn). An algorithm that
builds a roadmap Gn in Cfree, and returns the shortest path πGn connecting a start
and goal query point lying in the interior of Cfree, is asymptotically optimal [11] if:
C(πGn) ≤ (1 + ε) ·C(π∗) ∀ ε > 0, as n→∞.

Prior work [13, 11] has provided precise bounds on the radius rn so that the roadmap
Gn satisfies this property for all start and goal query points in the interior of Cfree.

2.2 Algorithmic Outline: Forward Search Tree over Orbital Roadmaps

Consider a high-level task planning algorithm ALGO that maintains roadmaps on or-
bits as well as a high level forward search tree representing the connectivity of orbits
through transition states. This could be done explicitly or implicitly through factor-
ization [9, 25, 6]. Fig. 3 depicts such an abstraction of the task planning space with
roadmaps constructed inside orbits. Consider the multi-modal problem where a robot is
tasked to pick-and-place a single object . The planner begins in qs inO0 whereM0 cor-
responds to transit. Transitions to the adjacent transfer modeM1 are achieved through
sampled grasps to reach O1,O2. Samples in the interior of O0 connect qs to t1, t2.
Then, sampled stable positions with the object reachO3,O4. t3 is an arm configuration
that achieves the desired object placement with grasp t1. When qg is reached inO4 with
motions connecting qs → t1 → t3 → qg the solution can be reported.

Fig. 3. Left: A C-space split into 2 modes with roadmaps (black) drawn within orbits connected by
transition states (pink). The start and goal configurations are drawn in green and red respectively.
Right: A high-level orbital graph keeping track of the connections between the roadmaps within
orbits (nodes labeled Oi) through the transition states (nodes labeled tj).
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Definition 3 (Asymptotic Optimality of ALGO). Algorithm ALGO, which returns a fea-
sible path Πn after n iterations, is asymptotically optimal if: C(Πn) ≤ (1 + ε) ·
C(Π∗) ∀ε > 0, as n→∞.

The conditions for ALGO to achieve AO are the following: (i) It can sample transition
states over positive measure subsets of mode boundaries; (ii) The orbital roadmap even-
tually connects every configuration inside an orbit explored by ALGO; (iii) The number
of sampled transitions nt → ∞ as the number of iterations n → ∞; (iv) For each
discovered orbit Oi the size of its roadmap ni →∞ as n→∞.

Algorithm 1 provides a high-level description of ALGO. The inputs are the initial
configuration qs, a goal region G, and two positive parameters: the number of interior
orbit samples Nm and neighboring transitions samples Nt added to the roadmap per it-
eration from the expanded orbit. A forward search-tree T over orbits is built, beginning
with the orbit containing qs. Each iteration, every orbit must have a non-zero proba-
bility of being selected (assured by random node selectiion) as Osel. The subroutine
expand roadmap adds more nodes and edges to an asymptotically optimal roadmap
construction algorithm (e.g., PRM∗, or FMT∗) with Nm more samples. The orbits are
not known apriori but Nt new transition points are uniformly selected from the bound-
aries with all neighboring modes, and connected to the roadmap GOsel

. Each of the new
(empty) orbits are added to the tree T, so that they get a chance to be expanded in the
future. Π keeps track of the best cost path that reaches the goal region G.

Algorithm 1: ALGO(qs, G,Nm, Nt)
1 Π ← ∅;
2 T(V,E);
3 T.V ← T.V ∪ O(qs);
4 for n iters do
5 Osel ← uniform random(T.V );
6 GOsel

← expand roadmap(GOsel
, Nm);

7 NOsel
← uniform boundary sample(Osel, Nt);

8 GOsel
← add transitions(GOsel

,NOsel
);

9 T.V ← T.V ∪NOsel
;

10 T.E ← T.E ∪ {(Osel,Oneighbor)∀Oneighbor ∈ NOsel
};

11 Π ← retrace path(G);
12 return Π;

ALGO is introduced as a general version of several existing algorithms that are simi-
lar in structure, while differing in the order and exact nature of exploration of the TAMP
search space. As such, arguments made in Sec. 4 should apply to algorithms that main-
tain the key properties of ALGO. The original Multi-modal PRM-based algorithm [8]
expands every orbit per iteration. So does more recent work [18]. Random-MMP [9]
selects one orbit and samples one neighboring transition per iteration. More recently
FOBT [25] samples an orbit per iteration, and if it hasn’t been previously explored, sets
Nm = Θ(N), Nt = Θ(N) and argues asymptotic optimality when N → ∞. The
arguments made for arguing the AO of FOBT will be summarized in the next section.
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3 Summary of previous results: FOBT
This section summarizes a previous result showing that FOBT is AO to highlight key
assumptions for the new result presented later.

Previous work proposed the FOBT algorithm [25]. To show asymptotic optimality,
this work uses topological tools to build a geometric construction, which traces a robust
task planning solution possessing clearance in the interior of each orbit, while maintain-
ing bounded error from the optimal task planning path. FOBT uses the following rule for
the connection radius of the roadmap in each orbit O:

rO(n) > 4(1 +
1

dO
)

1
dO

(µ(O)
µ1

) 1
dO
( log n

n

) 1
dO , (1)

where dO is the dimensionality of the orbit, µ being the Lebesgue measure or volume,
and µ1 is the volume of a unit hyperball. Note that this radius is effectively twice the
radius sufficient for PRM∗ [13] for AO motion planning within an orbit.

Theorem 1 ([25] Theorem 1). Let Gn be a geometric graph with n vertices constructed
using the connection radius in Eq. 1 across the orbits of a task planning space. Let
CFOBT
n be the minimum cost of a path on Gn and C∗ the optimal solution cost, then:

Pr({lim sup
n→∞

CFOBT
n = C∗}) = 1.

Consider segments of the optimal path π∗ti→ti+1
, which traverses an orbit between two

transition states (Fig 4) that are a concatenation of:
(i) One hyperball whose closure contains the start of the segment. (Assuming smooth
boundaries, say Bδ(qt−), such that ti ∈ Bδ(qt−));
(ii) One hyperball whose closure contains the end of the segment. (Assuming smooth
boundaries, say Bδ(qt+), such that ti+1 ∈ Bδ(qt+));
(iii) A strongly δ-clear path (refer to it as: πqt−→qt+ ) joining the two hyperballs through
the interior of the space, i.e., one that is always some δ > 0 away from obstacles.

Assumption 1 (Construction of Segments) Similar to motion planning setups [13, 11],
the interior of each segment π∗ is robustly optimal, i.e., there exists a sequence of
strongly clear paths, which are homotopically equivalent to optimal segments.

Assumption 2 (Hyperballs Around Transitions) The boundaries containing between
orbits in neighboring modes are assumed to be smooth (lower dimensional) manifolds,
such that it is possible to describe small enough hyperball regions of radius indepen-
dent of the algorithm. It is additionally assumed that a transition sampler is capable
of discovering all such positive volume regions by uniformly sampling the appropriate
sub-manifold.

Restating Equation 20 from [25], the probability of failing to be asymptotically
optimal is shown to diminish as follows for any ε > 0

Pr(CFOBT
n ≥ (1 + ε)C∗) ≤

Pr({Failing to sample in the neighborhood of transitions after n samples})+
Pr({Failing to trace bounded error path inside orbit after n samples}) (2)

6



It was shown that both of the probability terms on the right-hand side of the inequal-
ity go to 0 as n→∞. Given the query points qs and qg , the output from the algorithm
(Πn

FOBT) after n iterations can be described as follows.
Output of FOBT (qs, qg):

Πn
FOBT =

M⊕
i=0

πqi→qi+1
such that Cn

FOBT = C(Πn
FOBT) ≤ (1 + ε)C∗ (3)

where qi ∈ (qs, T
FOBT, qg), T FOBT = (ti)

M
i=1. (4)

A chief takeaway from the FOBT algorithm is that discovering a ti is guaranteed by
uniformly sampling the boundaries of modes (or orbits). Note that this property is a
consequence of the assumptions about the spaces involved, and not a feature of the
algorithm FOBT. It suffices to give this boundary sampling subroutine enough attempts,
which tend to infinity.

4 New arguments in integrated task and motion planning

Previous work has provided an analysis that sampling-based planning solutions for
TAMP are AO as long as they use a connection radius twice as large as that of AO
sampling-based motion planners [25]. This section builds a sequence of arguments to
show that the same connection radius as that in motion planning is also sufficient for
TAMP.

Summary of Arguments: Theorem 2 demonstrates the existence of a “robust” so-
lution to the TAMP problem given the current assumptions. Theorem 3 argues that an
optimal TAMP solution must comprise of a sequence of optimal paths between orbit
transitions. Theorem 4 argues that an AO roadmap-based motion planner will remain
AO even for a query between a start and a goal on the boundary of an orbit. Theorem
5 uses Theorems 3 and 4 to argue that ALGO is AO if it can find a robust transition se-
quence. Theorem 6 details the conditions necessary for a boundary sampler to find such
a transition sequence. Finally, bringing it all together, Theorem 7 proves that ALGO is
AO.

Define the set of all possible valid finite transition sequences

T = {T = (ti)
M
i=1 | 0 < M ≤Mmax},

where each ti is a transition state, and motion planning in a single orbit can connect
to an orbit in a neighboring mode through ti+1. Mmax is assumed to be finite as in
previous work [8, 25].

With a slight abuse of notation, define the cost of this transition sequence C(T )
as the least-cost task planning solution that can be obtained over T between an im-
plicit start and goal state, traced along piecewise robustly optimal segments (similar to
Assumption 1).

Theorem 2 (Robust Optimality of Task Planning). For a task planning query with
piece-wise analytic constraints, there exists a sequence of hyperballs on the boundaries
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with radius independent of n, such that any transition sequence passing through these
regions has bounded error to the optimal cost. There can be multiple such sequences.

More specifically, there exists a non-empty set of transition sequences T + ⊂ T
such that for all small ε+ > 0

C(T+) ≤ (1 + ε+)c∗, ∀T+ ∈ T +,

Without loss of generality, set T+ = (ti)
M
i=1. Then, there exist M balls Bθ(ti)

centered around transitions ti with radius θ > 0 such that for all sequences T ′ =
(t′i)

M
i=1 with t′i ∈ Bθ(ti) the cost is similarly bounded as C(T ′) ≤ (1 + ε+)c∗.
Note that each hyperball Bθ(ti) has a dimensionality identical to the submanifold

where ti was sampled.

Proof. The proof is a direct consequence of Assumption 2, and the guaranteed existence
of T FOBT as shown in Eq. 4, which means for

T + = {T FOBT}, ε+ = ε (from FOBT)

the existence of T + is assured. This directly proves the robust optimality of Π∗ in the
described setup for task planning. This additionally guarantees that the property holds
for all small ε+ > 0. ut

Fig. 4. The image shows the segment of the tra-
jectory inside an orbit, where the problem is
decomposed into connecting to the transition
points and motion planning in the interior.

Note: This is a straightforward extension
of the arguments presented in the previ-
ous work, and such robustness was in-
herently assumed therein. It should be
pointed out that even though the mini-
mal set T + = {T FOBT} which essentially
lies in the neighborhood of T ∗ suffices to
argue robust optimality, the relaxation of
the definition to allow the existence of an
arbitrary set T + captures a lot of situa-
tions in task planning where the optimal
solution is rarely unique. Consider the problem of rearranging objects A and B. It is
possible, the two solutions that transfer A, then B versus transferring B then A, are
effectively identical in cost, though drastically different in terms of how the transition
sequences look.
Implication: Theorem 2 indicates that there are positive volumes (the hyperballs around
desired transition configurations) in the submanifold on which these transitions exist,
and are sampled. This allows the cost of discovered solutions connected through these
to have (an arbitrarily small) bounded deviation from the optimal cost.

Theorem 3 (Pairwise-optimal Planning Over Robust Transition Sequence). Given
an ε+-robust transition sequence T+, a path Π constructed from optimal orbital seg-
ments traversing T+ maintains the ε+ cost bound.

Proof. Let T+ ∈ T + and let (qs, T+, qg) be the sequence of transitions with start and
goal configurations concatenated at either end. Let πqi→qi+1

denote a feasible motion
planning solution over a pairwise connection and π∗qi→qi+1

be an optimal connection.
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Let Π+ be the path concatenations of πqi→qi+1
such that C(Π+) ≤ C(T+). Let

Π∗ be the path concatenations of π∗qi→qi+1
. The result immediately follows since

C(π∗qi→qi+1
) ≤ C(πqi→qi+1

) ∀i, 0 ≤ i ≤M

=⇒
M∑
i=0

C(π∗qi→qi+1
) ≤ C(T+) ≤ (1 + ε+)c∗

This implies that it suffices to reason about the optimality of the pairwise motion plan-
ning problems, as long as the set of transitions from T + are sampled. ut

Theorem 4 (Pairwise-asymptotically Optimal Planning Between Robust Transi-
tion Sequence). Given Gn constructed by an asymptotically optimal roadmap-based
planner and solution path πnti→ti+1

found from Gn for two transitions ti to ti+1, then

lim
n→∞

Pr({C(πnti→ti+1
) ≥ (1 + ε)C(π∗ti→ti+1

)}) = 0, ∀ε > 0

Fig. 5. Construction at smooth
transition boundary.

Proof. This needs some additional consideration since
the transition configurations lie on the boundary of
the orbit, instead of the interior. Traditional sampling-
based roadmap methods ([13, 11]) guarantee the fol-
lowing event for interior points, say from q0 to q1.
Restating Def 2: limn→∞ Pr({C(πnq0→q1) ≥ (1 +
ε)C(π∗q0→q1)}) = 0, ∀ε > 0.

Note that q0, and q1 are not unique in any way, and
the above property essentially holds for any two points
in the interior of the space. Let the connection radius be
rn > 0. Given Assumption 1 about the segment connect-
ing ti to ti+1, there is a small enough hyperball that can
touch the smooth boundary points (Fig. 5). Construct balls of radius rn

2 . As n increases,
rn decreases and at some point becomes sufficiently small to satisfy Assumption 1. Any
point in the interior of such a ball is in the interior of the space. Let qn0 be the center of
such a ball, that gets closer to ti as n grows and rn

2 shrinks. Any sample in such a ball
must be connected to ti.

Inspect the event that such a hyperball of radius rn
2 fails to have a sample in sample

set Xn for either ti or ti+1 : {B r
2
(qn0 ) ∩ Xn = ∅} and {B r

2
(qn1 ) ∩ Xn = ∅}.

Pr({B r
2
(qn0 ) ∩ Xn = ∅}) =

(
1−

µ(B r
2
(qn0 ))

µ(O)

)n
(5)

=
(
1− µ1

µ(O)

(rn
2

)d)n
≤ e−

µ1
2dµ(O)

nrdn (6)

=⇒ lim
n→∞

Pr({B r
2
(qn0 ) ∩ Xn = ∅}) = 0, when lim

n→∞
nrdn →∞ (7)

The same argument holds for ti+1. It is evident that the connection radii recommended
by sampling-based roadmap planners already make this probability go to 0.
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Let q0 be the sample that the event {B r
2
(qn0 ) ∩ Xn 6= ∅} generated, and similarly

q1 for ti+1. The exact configurations do not matter as they are guaranteed to be in the
interior of the space.

So combining the failure conditions and by using the union bound it is possible to
write:

Pr({C(πnti→ti+1
) ≥(1 + ε)C(π∗ti→ti+1

)}) (8)

≤ Pr({B r
2
(qn0 ) ∩ Xn = ∅}) (9)

+Pr({C(πnq0→q1) ≥ (1 + ε)C(π∗q0→q1)}) (10)

+Pr({B r
2
(qn1 ) ∩ Xn = ∅}) (11)

Take the limit on both sides. Since all the right hand side terms go to 0, the probability
of the event {C(πnti→ti+1

) ≥ (1+ε)C(π∗ti→ti+1
)} goes to 0 as well, indicating that this

event ceases to happen asymptotically. Note that the underlying connection radius has
not been changed. ut

Theorem 5 (Pairwise-asymptotically Optimal Planning Converges in Cost). Given
ni samples in each pairwise motion planning problem ti to ti+1 over the robust tran-
sition sequence T+ ∈ T +, a path Πn is generated after n total iterations of the algo-
rithm. For all arbitrarily small ε+ > 0, the following holds:

lim
n→∞

Pr({C(Πn) > (1 + ε+)C
∗}) = 0, ∀ε+ > 0

Proof. Following the result of guaranteed convergence for each pairwise motion plan-
ning problem , it needs to be shown that each segment along T+ gets enough attempts
(ni) to allow convergence. Thus a necessary algorithmic condition is that for each mo-
tion plan connecting ti to ti+1, an AO sampling-based roadmap needs ni samples such
that as n→∞, ni →∞, ∀Oi.

The rest of the proof follows by combining the pairwise results to compose Πn

Asymptotically it is known:

C(Πn) =

M−1∑
i=1

C(πniti→ti+1
) ≤

M−1∑
i=1

(1 + εi)C(π∗ti→ti+1
) (12)

≤
(
1 +

M−1∑
i=1

εi

)
C(T+) ≤

(
1 +

M−1∑
i=1

εi

)
(1 + ε+)C∗ ≤ (1 + ε+)C

∗. (13)

Since each of the epsilon terms are arbitrarily small by definition, for all small ε+ > 0,
there would be some small enough values of ε1, . . . εM−1, ε+ that satisfy the bound.
Similarly the probability is evidently going to 0 since M is independent of n and ni.
For the estimated values of ε1, . . . εM−1, ε+, the probability follows from union bound

lim
n→∞

Pr({C(Πn) > (1 + ε+)C∗}) (14)

≤ lim
n→∞

M−1∑
i=1

Pr({C(πniti→ti+1
) > (1 + εi)C(π∗ti→ti+1

}) = 0 (15)
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It follows that in a robustly optimal task planning problem the solution cost from
ALGO can get arbitrarily close to the optimal solution cost if along a discovered transition
sequence T+ ∈ T + it:

– solves every pairwise transition connection over an orbit using an asymptotically
optimal sampling-based motion planner with the standard AO radius sufficient for
motion planning

– ensures every orbital roadmap (ni) grows infinitely as the total number of high-level
iterations (n) grows to infinity.

This resolves the second part of Eq. 2. Note that the argument holds over (qs, T+, qg).
ut

Theorem 6 (Sampling Sequence of Transitions). A forward search tree T , which
selects an orbit per iteration with probability Θ( 1

|T| ), and uniformly samples an Nt
expected number of neighboring transitions every iteration, is guaranteed to expand a
sequence of transitions that are ε+-robust.

Proof. Consider orbits to be selected uniformly at random from the working search
tree. Let Nt > 0 be the number of transitions added on each orbit expansion. For each
desired pairwise transition ti → ti+1 from an orbitOi, robust optimality guarantees the
existence of a positive volume around ti+1. The probability of sampling in that volume
is a small constant ε′ = µ(Bε(ti+1))

µ∩
> 0 which is independent of Nt or n. Here ε is

some small radius describing the region, and µ∩ the volume of the submanifold that is
being sampled.

This formulation makes the search tree identical in behavior to the naive random
tree described in previous work [16]. Reusing the arguments of [16](Theorem 18), by
substituting the transition probability with any ε′ > 0, sampling the correct sequence
of transitions from some T+ through the regions defined by Theorem 2 is guaranteed
asymptotically. This resolves the first part of Eq. 2. ut

Note that additionally [16](Theorem 3) ensures that every orbit will also be ex-
panded infinitely often, guaranteeing all ni → ∞ in each orbit when every expansion
contributes to a positive expected number (Nm) of samples to ni. In our model, Nt
simply needs to be positive, and can be a constant by the same argument, to ensure
coverage of the boundary submanifold.

Theorem 7 (Asymptotically Optimal Task Planning). When applied to a robust task
planning problem, solvable by a finite number of mode transitions, ALGO is AO if

1. a forward search tree over transition configurations is sampled uniformly at ran-
dom on the transition submanifold

2. the number of samples in each orbit and number of neighboring transitions in-
creases asymptotically

3. the roadmap contained in an orbit uses a connection radius of

rn(O) ≥ AO motion planning radius in each orbit O [13, 11]

Proof. This follows immediately from Theorem 5 and 6. ut
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5 Model for Approaching Boundaries

The previous sections have relied on the assumption that the boundaries of modes are
smooth (Fig. 4). This section shows that a relaxing this assumption to allow start/goal
points to lie on a non-smooth boundary can still result in AO under certain conditions.
The following discussion drops theM superscript notation and refers to Cfree ⊂ C as
the subspace of obstacle free configurations (of a single mode).

The typical analysis framework for sampling-based motion planning focuses on
tiling the interior of Cfree with hyperballs over solution paths. For smooth boundaries
∂Cfree it is possible to tile solution paths with balls that touch the boundary; but, any
irregularity on the boundary will violate this condition. This is readily demonstrated in
Fig. 2.

5.1 Cone Condition

To argue results for cases where the boundary is not smooth everywhere, this work
borrows certain topological tools for non-smooth boundaries. The proposed framework
still makes some assumptions in terms of the underlying space.

Definition 4 (Cone). A “q-cornet” [2]Hb(q,v, φ) is the intersection of a convex cone
with apex at q, and a hyperball Bb(q) of radius b. The cone is symmetric about vector
axis v and the “opening” of the cone is parameterized by φ = µ(Hb(q,v,φ))

µ(Bb(q)) ∈ (0, 12 ].

With a slight abuse of notation, this work refers to a “q-cornet” as a “cone”, similar
to the underlying literature [2].

Assumption 3 (Cone Condition) For every point q ∈ ∂Cfree there exist values b >
0, φ > 0 and a vector v so that there is a coneHb(q,v, φ) ∈ Cfree.

Note that Cfree automatically satisfies the (Poincaré) cone condition [2] in its in-
terior since the underlying topology of the interior contains hyperballs at any configu-
ration. This assumption is violated in pathological regions, such as degenerate narrow
passages. The following proposition shows that the cones introduced by Assumption 3
have a sufficient intersection with the interior of Cfree to allow sampling processes to
work.

Proposition 1 (Intersection of Cone and Free Interior). Given q ∈ ∂Cfree and its
associated coneHb(q,v, φ) from the cone condition, there exists a point q′ and a small
enough radius b′ so that Bb′(q′) ⊂ Hb(q,v, φ) ∩ Cfree, i.e., there is a hyperball at the
intersection of the cone and the interior of the free configuration space.

Proof. Since φ > 0, ∃ Hb(q,v, φ) ⊂ Cfree so that µ(Hb(q,v, φ)) > 0. This implies
µ(Hb(q,v, φ)∩Cfree) > 0, since µ(∂Cfree) = 0. Given the underlying topology of the
space, the positive measure intersectionHb(q,v, φ)∩Cfree can contain a small enough
hyperball Bb′(q′) ⊂ {Hb(q,v, φ) ∩ Cfree} for b′ > 0.

Let ϑq be the supremum radius b′ of a hyperball at the intersection of the cone
Hb(q,v, φ) and Cfree. This maximum radius can also be defined for the start q0 and
goal q1 query points as ϑq0 and ϑq1 , respectively.
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Fig. 6. The figure describes the cone condition for boundary paths showing cones at the boundary
points, and an intersection with the interior of the space.

5.2 Robust Clearance for Boundary Paths

The solution paths for the problems considered by this work must connect points that lie
on the boundary ∂Cfree. Such paths will be referred to as “boundary paths”, as shown in
Figure 6. The remainder of this section formally defines boundary paths and extends the
notion of δ-clearance to such paths. Finally, it shows that a motion planning problem
that meets this extended notion of clearance for start and goal points can be solved using
AO roadmaps.

Definition 5 (Boundary paths). For a boundary path π it is true that π[0] ∈ ∂Cfree or
π[1] ∈ ∂Cfree.

Typically, certain clearance properties need to be satisfied for solution paths in or-
der for sampling-based planners to be able to discover them. Consider a sequence of
subspaces – parameterized by a decreasing δ > 0, which approach the entire Cfree.

Definition 6 (δ-interior space). Given some δ > 0, the δ-interior space Cδ ⊂ Cfree

consists of all configurations at least δ distance away from ∂Cfree.

The benefit of the cone condition and resulting proposition is that boundary paths
can be decomposed into three segments: (a) one that passes through the cone defined at
π[0] = q0, (b) a second segment that transitions into the interior of Cfree, and (c) a third
segment that connects to the cone defined at π[1] = q1. Given this idea, the notion of
“strong δ-clearance for boundary paths” is introduced.

Definition 7 (Strong δ-clearance for Boundary Paths). A boundary path π satisfies
“strong δ-clearance for boundary paths” for some δ > 0, if there are path parametriza-
tions 0 ≤ t− < t+ ≤ 1 for the path, so that:
• the subset of the path π(0 : t−) from q0 = π[0] ∈ ∂Cfree to π[t−] ∈ Cδ lies entirely

in someHb̂0(q0,v0, φ0) ⊂ Cfree for b̂0, φ0 > 0.
• the subset of the path π(t− : t+) lies in the Cδ
• the subset of the path π(t+ : 1) from π[t+] ∈ Cδ to q1 = π[1] ∈ ∂Cfree lies entirely
in someHb̂1(q1,v1, φ1) ⊂ Cfree, for b̂1, φ1 > 0.

The construction of strongly δ-clear boundary paths is feasible by Proposition 1
for some 0 < δ ≤ 1

2 min(ϑq0 , ϑq1), when q0 and q1 are connected through Cfree. In
general, any range of δ where such a construction is possible can be considered. A view
of such a path at one of the ends is shown in Figure 7 (right).
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Fig. 7. (Left:) Strong δε-clearance Convergence, and (Right:) Strong δ convergence of some πε
w.r.t. a π∗ that traces the boundary.

Note that the optimal boundary path π∗ for a motion planning problem may ap-
proach arbitrarily close to obstacle boundaries and hence violate strong δ-clearance
conditions for boundary paths. In order to model regions of space in the vicinity of π∗,
which contain “near-optimal” paths with a cost that gets arbitrarily close to C(π∗), the
notion of δε-clear convergence from prior work [11] is adopted here. π∗ has to exhibit
some “weak clearance” and allow the existence of a sequence of strong δ-clearance
boundary paths that converge to it.

Definition 8 (Strong δε-clearance Convergence). A motion planning problem exhibits
“strong δε-clearance convergence” for boundary paths, if for all small ε > 0, there
exists some range of clearance values δ ∈ (0, δε], such that a “strong δ-clear boundary
path” πε with πε[0] = π∗[0] and πε[1] = π∗[1], has its cost bounded relative to the cost
of the optimal path π∗ as follows: C(πε) ≤ (1 + ε)C(π∗).

Assumption 4 Assume the motion planning problem under inspection exhibits “strong
δε-clearance convergence” (as shown in Fig. 7).

Theorem 8 (AO Connection Radius Is Sufficient for Non-smooth Boundaries). In
the case where q0, q1 ∈ ∂Cfree, the connection radius that guarantees asymptotic opti-
mality of the interior of the space is sufficient for connecting q0 to q1.

Proof. The arguments are identical to the proof of Theorem 4. The probability of failing
to connect these boundary points can be split into the probability of failing to connect
each boundary point to the interior, and the probability of failing to connect two interior
points with bounded error. The only difference occurs in Eq. 5-7, where the ball is
replaced by the cone such that the volume now decreases by a constant fraction φ.
Recall that Xn is a set of n samples and µ1 denotes the volume of a ball of radius one.

Pr({Hφ(ti,v, rn) ∩ Xn = ∅}) =
(
1− µ(Hφ(ti,v, rn))

µ(Cfree)

)n
(16)

=
(
1− φµ1r

d
n

µ(Cfree)

)n
≤ e−

φµ1
µ(Cfree)

nrdn (17)

=⇒ lim
n→∞

Pr({Hφ(ti,v, rn) ∩ Xn = ∅}) = 0,when lim
n→∞

nrdn →∞ (18)

This bound is still readily satisfied by the connection radius argued in asymptotically
optimal roadmap-based methods([13, 11]). It follows from the other arguments that mo-
tion planning inside an orbit, and task planning across a robustly optimal sequence of
transitions both converge to the optimal cost asymptotically. ut
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An instance of such a motion planning problem for increasingly narrow cones is
demonstrated in Fig. 8. Note that in the context of task planning the non-smoothness
of the boundaries necessitate a stronger assumption about the transition sampler in
task planning. The transition sampler needs to be aware of the precise submanifold to
sample, which might no longer be the dimensionality of the boundary, since the apex
of the cones might lie on a lower dimensional space. This is reasonable in practice. For
instance, a grasp sampler for a parallel gripper will sample transitions that constrain the
alignment of the object between the fingers.

Fig. 8. Instances of motion planning between two non-smooth boundary points in 2D, using the
radius from PRM∗, for a red triangular robot that can only translate. The start is shown, and the
green arc shows the path traced by the robot’s apex to reach the lower triangular cavity.

6 Discussion

This work aims to highlight useful analysis tools for understanding the properties of
sampling-based TAMP planners in order to achieve AO. In particular, this paper argues
that given reasonable assumptions about the TAMP planning problem an algorithm that
can guarantee sufficient sampling of mode transitions as well as orbit interiors will
retain the AO properties of the underlying sampling-based motion planner. Another
contribution is the relaxation of the smooth boundary assumption widely applied by AO
motion and TAMP planners. This work shows that it suffices that such boundary points
are countably finite along the path and permit hypercones that open into the interior of
the space. Moving away from smooth boundaries is reassuring as smoothness is hard
to justify in practical problems, especially in manipulation problems with contact. It is
also an issue for many motion planning queries, such as docking at a charging station.

In term of scalability, and practical performance, the algorithmic structure presented
in this work is rather general, and if implemented naively would prove inefficient. De-
vising effective admissible heuristics in TAMP is critical for the quick discovery of high-
quality solutions. It is also of interest to study whether the domain of transition se-
quences permit smoothing operations that are typically used in motion planning. The
description of the homotopic properties in the multi-modal space can prove useful tools
in improving TAMP solutions. The study of convergence rates and the inspection of finite
time properties for AO planners is an important consideration. The design of practically
efficient TAMP planners for realistic problems remains an active research area.
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