THEME ARTICLE: MACHINE LEARNING APPROACHES IN
BIG DATA VISUALIZATION

Giga Graph Cities: Their Buckets, Buildings,
Waves, and Fragments

James Abello ®, Haoyang Zhang ® Daniel Nakhimovich, Chengguizi Han, and Mridul Aanjaneya L] Department
of Computer Science, Rutgers University, Piscataway, NJ, 08854-8018, USA

Graph Cities are the 3-D visual representations of partitions of a graph edge set into
maximal connected subgraphs, each of which is called a fixed point of degree
peeling. Each such connected subgraph is visually represented as a Building. A
polylog bucketization of the size distribution of the subgraphs represented by the
buildings generates a 2-D position for each bucket. The Delaunay triangulation of
the bucket building locations determines the street network. We illustrate Graph
Cities for the Friendster social network (1.8 billion edges), a co-occurrence keywords
network derived from the Internet Movie Database (115 million edges), and a patent
citation network (16.5 million edges). Up to 2 billion edges, all the elements of their
corresponding Graph Cities are built in a few minutes (excluding I/O time). Our
ultimate goal is to provide tools to build humanly interpretable descriptions of any

graph, without being constrained by the graph size.

T echniques for analyzing massive datasets are
becoming central to several communities, with
the need for interactive and scalable visualiza-
tions being one of the most pressing issues.' Since a large
variety of massive datasets can be abstracted as having
an underlying graph topology, our interest is in computing
graph decompositions that are useful for making sense of
massive graphs, for which a direct layout is unavailable
due to memory constraints or impractical due to screen
size constraints. We focus on the identification of “global
data patterns” that emerge due to the co-occurrence of
the pairs of well-defined data entities.

Our goal is to find an “efficient” visual representation
of any graph that is driven by the dismantling of its
degree distribution. We introduce Graph Cities (see
Figure 1) as a visual representation of such dismantling.
It has the potential of bringing together streaming
computations and visualization to offer “large scale”
structural graph information without losing the ability to
interactively extract finer scale connectivity. All this is
possible by viewing city buildings as a representation
of sequences of graph waves,? which are in turn the

0272-1716 © 2022 IEEE

Digital Object Identifier 10.1109/MCG.2022.3172650
Date of publication 5 May 2022; date of current version
8 June 2022.

May/June 2022 Published by the IEEE Computer Society

sequences of graph edge fragments (see the “Problem
Formulation” section). The corresponding visual repre-
sentations can be rendered in a few minutes, with a rate
of processing of 4 million edges per second. They offer
humanly interpretable large-scale features of graphs
with billions of edges at different levels of granularity.

The coarsest views are offered by Graph City build-
ings with floors and frustums representing waves and
their interconnecting edge fragments. Each building's
internal structure is represented by a Directed Acyclic
Meta Graph (Meta-DAG) whose nodes can be expanded
into their internal edge fragments. These edge fragments
can be navigated by usual node-link diagrams at different
levels of detail depending on their size. In summary, our
approach follows a hierarchical edge decomposition with
six levels: edge graph decomposition, buckets, buildings,
waves, and edge fragments, with the bottom level con-
sisting of “structured” node-link subgraphs of reasonable
size that make them amenable to human descriptions.
To the best of our knowledge, this is the first time that
such a large-scale representation has been introduced
for visualizing graph datasets, that is, humanly interpret-
able at “natural” topological levels of granularity.

Summary of Our Overall Approach
An overview of our proposed framework is illustrated
in Figure 1. Our work builds upon the graph wave

|IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9614-0467
https://orcid.org/0000-0002-9614-0467
https://orcid.org/0000-0002-9614-0467
https://orcid.org/0000-0002-9614-0467
https://orcid.org/0000-0002-9614-0467
https://orcid.org/0000-0002-0082-5876
https://orcid.org/0000-0002-0082-5876
https://orcid.org/0000-0002-0082-5876
https://orcid.org/0000-0002-0082-5876
https://orcid.org/0000-0002-0082-5876
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5286-8173

- MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

54

g
§
E
X
F

o ———

Building
Glyph

FIGURE 1. When a direct graph layout is unavailable or impractical due to memory or screen size constraints, our method can

render humanly interpretable visualizations of massive graphs on the order of 10 seconds (after a few minutes of preprocessing)

by leveraging the Graph Waves? decomposition. (Top) Glyph map for the Friendster social network with 1.8 billion edges. (Middle
left) Graph City for the Friendster social network. (Bottom left) Individual buildings in the Graph City formed by stacking edge
fragments. (Bottom center) Internal structure of a building's Meta-DAG with a peel value of 71 showing finer scale connectivity.

By leveraging hierarchical decompositions, our framework allows for interactive visualization of massive graphs. (Middle right)

Green bush patches representing buckets with more than one building. (Bottom right) Expansion of a green bush patch into a

detailed view of its buildings’ vicinity.

decomposition recently introduced in the work of
Abello and Nakhimovich,? which is a refinement of the
iterative degree edge partition.?> Each connected sub-
set of edges in the partition is visually represented as
a building. The size distribution of the subgraphs rep-
resented by the buildings is bucketized via a polylog
function of the total number of edges in the entire
dataset. Buckets containing more than one building

|IEEE Computer Graphics and Applications

are visually represented by bushes that are generated
via special L-systems® [green patch areas in Figure 1
(middle right)]l. A spiral embedding of this polylog
bucketization provides an overall layout for all the
buildings in a Graph City.

Each Graph City has a street network that is
obtained by computing the intersection graph of the
collection of vertex sets of the buildings. The 2-D

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

positions of the centers of the bottom floors of the
buildings are used to indicate the location of the build-
ing vertex sets. The weight of the geometric edge
representing the distance between two buildings is
obtained as a function of the size of the intersection
of the corresponding buildings’ vertex sets divided by
the size of their union (i.e., their Jaccard coefficient).
All the elements of a Graph City, including its build-
ings, bushes, and street network, are built in a few
minutes (excluding 1/0 time) and storage proportional
to the number of edges and vertices of the graph. We
exemplify our results on a variety of large graph data-
sets ranging in size from a few million to up to 2 billion
edges. They include the Friendster social network
(1.8 billion edges), a co-occurrence keywords network
derived from the Internet Movie Database (115 million
edges), and a patent citation network (16.5 million
edges). Our main contributions are given as follows.

» Graphs are represented as buildings collections.
Colored building interfloor volumes encode sub-
graph sizes and density.

» The entire collection of buildings is accessible
via a city map, where each map entry has associ-
ated two coordinates (fixed point value, logarith-
mic bucket ID) and a glyph that encodes the
density and overall macrostructure of the corre-
sponding set of fix points (see the “Touring a
Graph City" section).

> A 2-D spiral layout is used to fix building loca-
tions, and also for visualizing the street network,
whose edge widths are determined by the inter-
section graph of the buildings’ vertex sets.

> Smaller buildings are bucketed into green areas
of two types: bushes and vicinities. Bushes are
generated by special natural-looking L-systems.
Vicinities are specially filtered subcollections of
buildings of “medium” size.

» Graph Cities can be navigated and queried at dif-
ferent levels of granularity using a multidirec-
tional steering wheel and several city path
exploration primitives.

» The largest buildings coming from graphs with
about a billion edges are rendered in a few sec-
onds. Generating all the corresponding buildings’
rendering data from a given iterative edge decom-
position takes a few minutes. This work assumes
that the graph edge set has been partitioned into
fixed points of degree peeling. All the algorithms
used here are linear both in time and storage.

As far as we know, Graph Cities constitute the first
abstract visualization of node-link representations of

May/June 2022

graphs that is linearly computable, and amenable to
interactive topological exploration at different levels
of granularity for massive graph datasets.

The rest of the article is organized as follows. The
“Related Work" section summarizes relevant work. The
“Problem Formulation” section introduces edge frag-
ments and graph waves. The “What is a Graph City?”
and “Graph Cities Street Network” sections describe
Graph Cities and the corresponding street networks.
The “Rendering Graph Cities” and “Touring a Graph
City” sections discuss the rendering of Graph Cities
and city tours. The “Description of Sample Datasets”
section presents our results on three datasets. The
"Machine Learning Connections” section points out
some potential machine learning (ML) tasks that can
be derived from graph edge decompositions. Finally,
the “Conclusions and Closing Remarks” section con-
cludes this article.

Some technical results, appendixes, and a video
demonstrating our interface are available at https://
rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9.

Efforts to deal with large graphs have mainly employed
computational approaches to handle scale. Generally,
computation and visualization appear to be treated as
independent tasks. One approach is to develop scalable
algorithmic tools that amplify users’ understanding of
the underlying data topologies at different levels of
granularity. In general, macrograph views can in princi-
ple be obtained by some form of vertex or edge aggrega-
tion conceptually represented as hierarchy trees.>® All
previous techniques have algorithms with running time
substantially greater than linear on the number of graph
elements, making them not suitable for massive graph
visualization. Graph Thumbnails, as a mechanism to
identify and compare multiple graphs, are alone the sub-
ject of Yoghourdjian et al.'s” work. Their decomposition
is based on a partition of the vertex set into vertex peel
values. Ours is based on an iterative partition of the
edge set into subgraphs, each of which is the subgraph
induced by the highest core that appears on each iteration
of the decomposition. Generation of graphs with a prede-
fined core structure is the focus of Koevering et al.’s work.2
Computational aspects of core-related graph decomposi-
tions and graph sparsification are studied in the works by
Wang et al,® Batagelj and Zaversnik,® and Arleo et al™ A
new family of single parameter dense subgraph objectives
is introduced in Veldt et al.'s work." Some algorithmic prin-
ciples for graph reachability in large graphs are proposed
in Jin et al.'s work."® However, such approaches are not yet
scalable to billion edge graphs. The ML approaches, such

IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

55

https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

56

as those described in the work of Hamilton et al.'* have
been proposed to learn low-level embeddings of graphs.
Our approach differs from prior work in the sense
that we look for efficient data traversal algorithms via
exploration primitives that lend themselves to visual
representations that amplify users’ understanding of
the internal graph structure for graphs that are too
large to be visualized directly. Buckets, bushes, vicini-
ties, buildings, waves, and edge fragments are exam-
ples of such subgraph primitives. Subgraph profiles
that include properties, such as peel values, diversity,
average weighted degree, size, volume, density, and
height, are potentially useful to drive the search for
“interesting” subgraphs in ML computational settings.

Graph Edge Fragments and Waves

One approach to getting a sense of the topology of a
graph begins with a choice of a starting set of vertices
Sy satisfying a property of interest P and marking
these vertices as “explored.” All the edges with at least
one endpoint in Sy are then traversed, deleting them
from the graph, and adding them to the edge fragment
associated with S;. These edges then become the
beginning part of the graph wave generated by S;. If
there are any edges with one endpoint not in Sy, we
check whether those vertices not in S still satisfy a
stricter version of P in the remaining graph. If there
are any such vertices, we continue exploring in parallel
only from such vertices, adding incrementally the new-
found edges into the current wave started by Sy, and
deleting them from the existing graph. This process
ends when all edges with exactly one endpoint in the
current wave lead to vertices that do not satisfy P.
This means that if there still remain “unvisited” edges,
a new wave can be initiated by selecting another start-
ing set of vertices satisfying a property of interest. We
formalize the abovementioned process with the fol-
lowing definitions.

Definitions

We consider undirected graphs G = (V, E)) with vertex
set V(G) and edge set E(G). We denote by n the num-
ber of vertices in V, m the number of edges in E, and
the degree of a vertex u € V by deg(u). Forany U C V,
let G(U) denote the subgraph of G induced by U. For
the sake of completeness, we restate some definitions
from Abello and Queyroi's work.?

Definition 1 (Peel Value): The peel value of a vertex
u € V(G), denoted peel,(u), is the largest i€

|IEEE Computer Graphics and Applications

FIGURE 2. Left: Vertices are sized and colored according to
their peel value: 1-small gray, 2-middle blue, 3-large orange,
4-extra-large red. Right: Edges are bolded and colored
according to the iterative edge decomposition using the

same size and color scale.

[1,deg(u)] such that u belongs to a subgraph of G of
minimum degree :.

Definition 2 (Graph Core): The core of G, denoted
core(G), sometimes also called the k-core of G, is the
subgraph induced by the maximal subset of vertices
of G whose peel value is maximum.

Definition 3: A graph Fj, is a fixed point of degree
peeling k, if core(F),) = F}, and the peel value of each
vertex in Fj. is k.

The left of Figure 2 shows vertices in a small graph
colored by their peel value. It also shows on the right
edges colored according to the iterative edge decom-
position from Abello and Queyroi's® work. This edge
partition is obtained by removing the core edges (i.e.,
initially the red extra thick edges), updating the vertex
peeling values, recoloring the affected edges, and
identifying the next highest core edges and repeating
until the whole graph is processed. When an edge gets
removed from the graph during this iterative peeling
process, it gets assigned its peel value. A Graph City
(see the “What is a Graph City?” section) can be
derived from this edge partition by mapping each con-
nected edge color class into a building.

Next, we present some new definitions that gener-
alize the notion of graph edge fragments and waves
introduced in Abello and Nakhimovich's work.?

Definition 4: The boundary of a vertex set S C V' is
defined as dS={veV:3 (u,v)eE, ues, v¢ S}
The proper boundary of S, denoted 9.5, is the set of
vertices in 95, which satisfy a desired property P
restricted to the graph induced by V'\ S. These defini-
tions are extended, in a straightforward fashion, to a
collection of disjoint sets by taking their union.

Definition 5: Given a vertex subset S C V, the edge
fragment frag(S) generated by S is the set of edges
(u,v), such thatu € S.

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

Definition 6: A graph wave W (S, P) is the union of
fragments in the sequence (frag(S}));.,, with S, being
the initial source seed set of vertices satisfying P and
each subsequent S; 1 = dp(U {:US];). We refer to S, as

the initial source seed set for the wave.

Why are Graph Waves Useful Abstractions?
Graph waves generated by minimum degree seed sets
were introduced in the work of Abello and Nakhimovich.?
In this work, we use edge fragments to describe and visu-
ally represent waves' internal structure using a Meta-DAG.

Graph waves provide different “lenses” into the
structure of a graph according to a particular property
or substructure. Graph waves derived from a graph’s
degree distribution are essential for discovering the
nonregular macrostructure of very large graphs, and
at the same time, help isolate edge fragments with
peculiar levels of regularity. For example, if k is the
minimum degree of a graph G and if S, consists of all
the vertices of degree k, and subsequent boundary
sets are restricted to have degree strictly less than
this minimum k, the corresponding wave is called a
minimum degree wave.

Graph waves can be adapted to the particular prop-
erties of the boundary vertex sets and edge fragments
being discovered during the algorithmic exploration of a
large unknown graph topology. In this work, we only use
waves generated based on vertex degree thresholds.

Meta-DAG Internal Structure of a Wave W (S, P)
Since the edges of a wave W (S, P) are obtained by tak-
ing the union of edge fragments in the sequences
(frag(S)))1- where S;,1 = dp(|J 1 S:), the wave vertex
set is an ordered partition of subsets (S, 51, . ..Sy). We
use the connected components of the subgraphs
induced by each subset to define a Meta-DAG, where
each macrovertex represents such connected compo-
nents. Weighted directed metaedges ((Cj.,Ci.), Wav)
encode a nonempty set of edges {(z,y) : 2 € Cj,,y €
Ci,}, where C;,, and C;,, are the connected components
of S; and S;. The weight W, , encodes the number of
edges running between C;,, and C,..

The spanning subgraph of this metagraph that con-
sists of only those metaedges that connect compo-
nents present in consecutive vertex sets, S}, S, is
called the spanning Meta-DAG of the wave [see Figure 1
(bottom center)]. It describes some of the most funda-
mental directed internal macroconnectivity of a wave
and is expected to be substantially smaller than the
wave itself. In the case of a tree, we have a simple
description of its wave interpretation: its number of frag-
ments is equal to the radius of the tree.

May/June 2022

We assume that the input is some ordered partition
(Eo, Ey,...,E.) of the edges of a graph G = (V, E),
where each E; is edge maximal with respect to a pre-
defined property. An efficient representation for such
partitions is stored as a set of triples (source, target,
and label ;). This assumption is justified since the
edges of any graph G can be efficiently partitioned
into edge-maximal subgraphs Gy, each of minimum
degree at least k and average degree not more than
2 k.3 We perform a wave decomposition as in the work
of Abello and Nakhimovich.? This decomposition is
logically stored in three parts: triples of (source, target,
unique fragment ID), a mapping from unique fragment
IDs to wave numbers, and a mapping from wave
numbers to edge label; s. The vertex set V}. of each
such subgraph G}, is partitioned into ordered sets V. ;
that correspond precisely to minimum degree wave
W(Sy, P) (see the “Problem Formulation” section),
where S consists of the vertices of minimum degree,
and the property P corresponds to boundary vertices
of degree less than the degree of vertices in 5.2

A Graph City is a 3-D representation of a given maxi-
mal edge graph partition (Ey, E4, ..., E,), and such sam-
ple representations are shown in Figure 1 (middle left) and
Figure 3(f)—(h). A Graph City consists of a floor plan of
buildings, green patches of bushes that represent clusters
of small buildings, and a weighted street network.

Graph City Buildings

For each edge-maximal subgraph G, we use its
ordered sequence of vertex subsets (Vk,j)j?’zo, their
“internal” edges, and those edges running between
consecutive levels to create a visual representation
for each such fixed point G, that resembles a building
in a city with h floors (see Figure 1).

This building representation provides an alternative
view of a fixed point G, = (V}, E}.) that can be computed
in time and space linearly dependent on the size of Gy,
plus the complexity of finding and/or “describing” the ini-
tial subset V},o of V. That is, the macrostructure of any
fixed point can be described as a “building” whose internal
structure is a Meta-DAG (see the “Problem Formulation”
section), with macrovertices representing connected
components of seed sets within each building floor [see
Figure 1 (bottom center)].

A graph building with % floors representing a fixed
point G\, = (Vi, Ey) is completely determined by the
disjoint union of ordered edge fragments specified by
the partition of Vj, into level sets (V}‘.‘j);’:o. Our repre-
sentation requires only 5 & numbers. For each wave we
specify two disk radii, the starting height, the color of a
frustum, and a light intensity for a city night view.

IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

57

- MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

58

| Path Navigatien || Tour E I

FIGURE 3. User controllers and sample city layouts. (a) Dataset selector. (b) Steering wheel. (c) Building walk controller. (d) Sum-

mary sculpture for the patent citation network. (e) Path navigation controller. (f) Friendster network city. (g) Movie phrase

co-occurrence network city. (h) Patent citation network city. (i) Delaunay triangulation of the spiral building layout (thin green).

The thick red street network corresponds to the white street network in the patent citation network city.

The “jth floor” of a building representing G, corre-
sponds to the subgraph induced by a subset of verti-
ces V. ;. Each floor is represented by two concentric
disks, one above the other. The radius of the bottom
disk encodes the number of vertices in the seed set of
the starting fragment of the corresponding floor. The
radius of the top disk encodes the total number of ver-
tices besides the initial seed set vertices. The top disk
is placed at the same height as the bottom disk of the
next floor. A frustum between the bottom disks of
adjacent floors is set to have volume encoding the
total number of edges on the floor. Since the radii of
the two disks are already determined, the height of
the frustum is calculated from the desired volume.

A special fixed color map across the entire graph is
used to encode the density of a variety of induced sub-
graphs. For example, the color of a frustum represents
the density of the set of edges running between the
corresponding two floors, and the same color map is
used to highlight the density of the connected compo-
nents within a floor, as shown in Figure 1.

A flag on top of a building displays summary infor-
mation that includes the distribution of fixed point val-
ues of the corresponding bucket.

|IEEE Computer Graphics and Applications

Handling buildings with lots of fragments does not
present an issue because an intermediate structural level
of granularity between fixed point buildings and fragments
is provided by waves (see the “Problem Formulation” sec-
tion). The floors of a building represent contiguous seg-
ments of fragments that satisfy some initial condition.
They are characterized by their source layer of vertices
and an ending layer of vertices whose unexplored neigh-
bors violate a prespecified expansion condition. The
beginning and end fragments of minimum degree waves
specifically satisfy a bounded-degree condition.

Summary Graph City Sculpture

To provide an overview of the size distribution of fixed
points in the set of buildings in a graph city, we use a
summary sculpture [see Figure 3(d)]. This sculpture is
obtained by considering each building as its set of
connected components. All these edge maximal con-
nected subgraphs with the same peel value and the
same size are represented by cylinders encoding their
frequency. Each cylinder of a particular peel value
appears at a unique height in the sculpture. Larger cyl-
inder radii correspond to a higher frequency of a

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

particular size. Our interface provides access to the
location of all buildings in the graph city that corre-
spond to a fixed point selected in the sculpture.

Vertex Diversity and Light Intensities

Graph Cities can be seen as 3-D representations of a
coloring of the graph edges, where colors encode the
edge peel values. This coloring partitions the edges
adjacent to any particular vertex by their assigned
color. The frequencies of these local colors for a vertex
define a profile vector for that vertex. Following the
work of Abello and Queyroi,®* we compute this profile
vector's Shannon entropy and use it as a measure of
the diversity of the color pattern of the local edge col-
oring around each vertex. A higher diversity of a vertex
is an indicator of a higher weighted level of participa-
tion of that vertex in a given edge partition. It is worth
noting that diversity is a more expressive measure
than degree. Specifically, very high-degree vertices
can have very low diversity. We add diversity light
intensities to the disks in the city sculpture to encode
the average diversity of the vertices in the correspond-
ing connected fixed point.

Graph City Interpretation
Since Graph City buildings represent connected fixed
points, the following are natural questions.

1) What do floors tell us about a building in a
Graph City? The number h of floors in a building
(i.e., the number of waves) indicates a fixed point
whose full exploration requires the sequential
activation of 4 disjoint seed sets.

2) What does a building volume represent? It encodes
the number of edges of the represented fixed point
of degree peeling. A building with no enclosure rep-
resents a more localized topology (i.e. is a “tree-
like” fixed point with only consecutive floor edges).

3) How is the internal detailed structure of a building
made accessible for user exploration? It is repre-
sented by a Meta-DAG obtained by contracting the
connected components of each fragment seed set.
This Meta-DAG represents the connectivity between
the connected components of all seed sets appear-
ing in the waves.

Graph City Layout and Street Network

The size distribution and the peel value of the connected
fixed point are used to generate a 2-D position for each
building. This is done by bucketing the fixed point of a

May/June 2022

graph by size and peel value, and then mapping each
such bucket to a 2-D location by following an Archime-
dean spiral. These connected fixed points are grouped
together into buckets, according to the number of edges
and peel value. Bucket i has fixed points of size s, such
that log"!(n) < s <log'(n), and a sub-bucket i, is cre-
ated for connected fixed points with peel value k& in
bucket i. We create a building for the largest fixed point
in each sub-bucket B, and if | B| > 1, we create bushes
(explained in the next section) for a representative selec-
tion of log(8 x (| B| — 1)) fixed points from B. In addition,
for such buckets we also draw a grass patch as a green
polygon with log(8 x (|B| — 1)) + 2 sides [see Figure 1
(middle right)]. From each sub-bucket, we display the
largest building and a flag with the information of the
shown building, with a glyph on the back for opening the
local vicinity.

The Graph City street network is determined by the
Delaunay triangulation of the building locations in the
spiral layout [see Figure 3(i)]l. The weight of a connection
between two buildings is proportional to the intersec-
tion of the subgraph vertex sets represented by the two
buildings. Graph-theoretically, the street network is
determined by the intersection graph of the collection
of vertex sets of the subgraphs (G, = (Vi, Er));_q
which in turn are determined by the given edge partition
(Ey, E1, ..., E.). When a particular building is selected
by the user, a Euclidean spanning tree rooted at that
building displays the corresponding street network,
which is obtained by a Breadth First Search. If the build-
ing street network is disconnected, then we show a
spanning forest instead.

Bushes and L-Systems

To provide a visual indication for the properties of
fixed points in a sub-bucket (besides the largest one
represented by the building), we sort the fixed points
in a sub-bucket by size and uniformly select a few
fixed points to draw as bushes [see Figure 1(middle
right)].

We extended an implementation of a turtle graphics-
based L-system interpreter to draw the underlying bush
skeleton structure and then applied 2-3 iterations of a
natural looking L-system, starting at evenly spaced
lengths along the stem and branches.? Some sample
bushes are accessible in an appendix gallery.”

#[Online]. Available: https://github.com/andonutts/donatello
B[Online]. Available: https://rutgers.app.box.com/s/ms39u7z4a
93lidv7av0zi8wadtwgdis9

IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

59

https://github.com/andonutts/donatello
https://github.com/andonutts/donatello
https://rutgers.app.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.app.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.app.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

60

TABLE 1. Statistics for all datasets.

Dataset cC FP Ccv Mw MF WT RT
Friendster 1 29,692 304 212 3,279 501.45 11.82
Movies 38 2,044 3114 37 282 15.42 3
Patents 3,627 6,469 64 47 996 1.93 3.3

The last column shows the rendering time (RT) for the graph city in seconds.

We use Three,js,”® a 3-D Javascript library to create
and display Graph Cities interactively in the web
browser using WebGL. Each building in the Graph City
consists of several floors (i.e., edge fragments). For
each floor, we instantiate a cylinder shape geometry,
where the top and bottom face radii, height, and color
are chosen appropriately from the data (see the "What
is a Graph City?" section), the number of balcony seg-
ments defaults to 6, with 3 windows per floor in the
night view. All floors are generated in the material
space, centered at the origin, and subsequently trans-
lated in the Y (up) direction to form a building in the
world space. Each building is also translated in the
X- and Z-directions to form the spiral layout (see the
"Graph Cities Street Network” section). Bushes are
generated with an L-system.”

On top of each building, a flag displaying summary
information for that building (i.e., edge-maximal sub-
graph) is added. A box shape geometry is used for the
flag, and a cylinder shape geometry is used for the
mast. The length of the mast and the size of the flag
are all determined from the dataset.

To highlight the street network representing data
flow from one building to the remaining Graph City,
we precompute the Delaunay triangulation for all the
buildings in the Graph City. When a user left-clicks a
particular building, we perform a Breadth First Search
(BFS) from the root building to the rest, and display
only those edges that are encountered in the search.
The width of the edges is determined by the data.
Rendering times for the Graph City for each dataset
are summarized in the last column in Table 1.

The interactivity provided by Three,js™ allows the
user to explore different parts of a Graph City con-
veniently from a browser. Our interface offers users
several entry points to different “regions” of the
city (see Figure 4). A “region” of a city is character-
ized by a peel value and the bucket ID of all the
buildings with that peel value and whose sizes are

|IEEE Computer Graphics and Applications

within a logarithmic factor. All these pairs (peel
value, bucket ID) are displayed in a 2-D grid (i.e., a
city map), where each point has associated either
a circular glyph representing a big building in the
central part of the city (i.e., downtown) or a spiral
glyph representing multiple buildings of similar
size that are located next to each other in green
patches of bushes (i.e., vicinities).

Steering Wheel
A steering wheel and a path navigation controller
assist users during Graph City explorations.

The steering wheel consists of three subcompo-
nents [see Figure 3(b)]: a reset camera button, height
slider, and directional wheel controller. Under the
reset camera button, there is a height slider that the
user can use to change the camera’s vertical position.
On the right-hand side of the slider, a wheel controller
gives the user the ability to move freely in eight hori-
zontal directions to reach any position on a horizontal
plane. The combination of the steering wheel and the
height slider allows a user to reach any geometric
position in the city's free space.

Glyph Map

Each point in this grid map has an associated glyph
that summarizes the subset of the corresponding con-
nected fixed points (i.e., buildings) in the graph city lay-
out [see Figure 1 (top)]. A circular glyph represents a
unique building, and a spiral glyph summarizes a set of
buildings whose represented subgraphs have sizes
within a logarithmic factor.

The area of a circular glyph represents its corre-
sponding building size in edges, and the color enco-
des its density. A clockwise sequence of spikes
inside the circle corresponds to its floors (i.e.,
waves). For each spike, the lengths of two line seg-
ments starting from the center encode the vertex
size of the seed set and the vertex size of the whole
wave, respectively. The edge size and density are
represented by its area and color. The starting angle,
from the left to the first spike, encodes the ratio

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

.| Select
dataset

Explore City:

steering wheel,

glyph map, path

> navigation, global
queries, city tour,

local vicinity, gallery

(Refer to Figure 8)

Is there

N an "interesting” Mark,
L5 10 building (size, height, > annotate and
density, diversity, add to gallery

Select an
“interesting"

building 4 floor
Meta-DAG (height, width,
Usmall"?, density, ring

color, ...)

Iterative
maximal
> matching
contraction
Meta DAG

Locally
exploring 3D
Meta-DAG

Is there an

interesting” meta> Mark,
C node (size, density, > annotate and
meta-in/out add to gallery

degree)?

Locally
exploring 3D |Yes

node-link
diagram

Yes (Bt]

FIGURE 4. Graph City exploration scenarios.

Ma
> annotate and
add to gallery

between the peel value and the average degree of the
corresponding building. For a spiral glyph, its area and
color represent the overall size and density of the cor-
responding set of connected fixed points. The number
of rounds it spins out encodes the number of con-
nected fixed points contained. The starting angle, from
the left to the outer end, encodes the overall ratio
between the peel value and average degree.

May/June 2022

Path Navigation

The path navigation controller [see Figure 3(e)]
opens up when users click the “Path Navigation”
button. Users can left- and right-click a building in
the city to set a source and a target, respectively.
A cumulative exploration mode is provided, where
the user can save the results of previous queries
for further exploration.

Global Queries and City Tours

We use a navigation primitive to implement building
walks for inspecting a building exterior and also for
constructing a full city tour.

Graph-based notions, such as the subgraph's size,
diameter, density, and diversity, have an “intuitive”
interpretation in a Graph City. On the other hand,
terms, such as city tours, city commutes, building
heights, landmarks, local vicinities, and city galleries,
can be given a graph theoretical interpretation that
may be potentially useful to describe data properties.

Besides queries, the spiral layout of buildings pro-
vides a local geometry that can be used to explore the
city. As an example, we compute a two-factor approxi-
mation of a minimum geometric TSP'® on the Euclidean
Delaunay triangulation graph.

Building Exploration

Hovering over one point on the city map highlights the
corresponding buildings in the city and the corre-
sponding frustum in the summary sculpture. This
brings an infobox summarizing information about the
corresponding subgraphs, which guides the user for
further exploration. A left-click on a chosen fixed
point address allows users to view more detailed infor-
mation, such as floor size distribution, and perform an
exterior building inspection to detect “interesting”
floors.

Zooming Inside a Building

Left-clicking the glyph on the top-right corner of the
selected building flag activates the next level of explo-
ration based on the size of the corresponding Meta-
DAG. Namely, if the Meta-DAG has a size less than a
prespecified threshold, it is displayed via a 3-D force-
directed layout, and its metanodes can be individually
explored in a 2-D standard node-link diagram repre-
sentation or in a 3-D level representation of its own
local edge set decomposition. In the case that the
Meta-DAG of the corresponding fixed point is too
large, the user is offered a floor/fragment selection
menu. In the extreme case that fragments themselves
are fixed points too large to be displayed, we apply an

IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

61

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

62

iterative maximal matching contraction process to get
a macroview of it that can then be explored further
interactively. It is worth mentioning that in our exten-
sive exploration of a variety of datasets, we have
found only a couple of such cases. Theoretically
speaking, this is possible if we have “very large” regular
bipartite subgraphs embedded in our input graph.
Needless to say that the detection of such very large
“regular” special subgraphs is an interesting avenue
for further theoretical investigations.

Upon entering a particular building, the view
changes to highlight the finer scale internal connectiv-
ity for each edge-maximal subgraph (or fixed point)
that constitutes a building. Our interactive visualiza-
tion ultimately owes its speed to the hierarchical
Graph Wave decomposition.? At the macroscopic
level, our abstraction has a much smaller spatial com-
plexity than the actual dataset, which makes render-
ing cheap. Rendering is never the bottleneck, as the
user is only visualizing a subset of the data.

Local Vicinity

When a map glyph corresponds to more than one con-
nected fixed point, a natural step is to expand the
union of all the edges in these subgraphs as a mini
Graph City that we call a local vicinity [see Figure 1
(bottom right)]. A local bucketization of edge size dis-
tribution is applied to generate the layout of the local
vicinity. Users can use the same navigation tools,
including the steering wheel, building walk, and path
navigation, to explore the local vicinity, and click the
glyph on the top-right corner of a flag to go inside the
corresponding building in the local vicinity.

User Summarization Tools

We are designing summarization tools to aid users
annotating those subgraph patterns that they find
interesting, and place them in a city gallery with
annotations. Currently, users can annotate subgraph
patterns indicating their findings and add the corre-
sponding subgraph patterns to a pattern gallery acce-
ssible from the top of the user interface. This gallery
could potentially be used as labeled data for “making
sense” of the overall large graph structure at different
levels of granularity. Some sample “interesting” sub-
graphs are listed in an appendix.®

°[Online]. Available: https://rutgers.box.com/s/ms39u7z4a93
lidv7av0zi8wadtwgdisSlink

|IEEE Computer Graphics and Applications

Our first dataset is the Friendster social network con-
sisting of 65,608,366 nodes each representing a user
and 1,806,067,135 edges representing “friendships”
between them. This dataset was retrieved from the
Stanford Large Dataset Collection (SNAP)." Our next
dataset is a graph of phrases used in movie reviews.
There are 218,052 nodes each representing a phrase
and 115,050,370 edges, where each edge connects two
phrases both used to describe the same movie in a
review. This dataset was derived from the Internet
Movie Database.? Our third dataset is a patent cita-
tion network, also from the work of Leskovec and
Krevl."” There are 3,774,768 nodes, each representing
a patent, and 16,518,947 edges, each linked to a cited
patent.

Table 1tabulates the number of connected compo-
nents (CC), connected fixed points (FP), peel value of
the core (CV), maximum number of waves among its
fixed points (MW), maximum number of fragments
among its fixed points (MF) for each dataset, and the
corresponding wave decomposition time (WT) and
rendering time (RT) in seconds. The spiral length is
related to the total number of graph edges. The num-
ber of fragments in a building, i.e., the building’s height,
encodes the longest path length in the building's
Meta-DAG.

Catalogue of subgraph patterns: A useful outcome of
user or computer explorations of any graph city will be
a summary and an extensive catalogue of the sub-
graph patterns found. For this to be feasible, users
must be provided with annotation and summarization
tools that can keep track of their exploration trails.
These patterns should be classified at least by size,
density, frequency of occurrence, rarity, interest, and
usefulness. To assess the efficacy of these tools, we
are currently identifying a list of basic tasks that a
user can perform in order to conduct a substantial
number of user experiments. For example, can graph
cities be used effectively on the shortest path approxi-
mations queries?

One of the ultimate goals of this work will be to
have a descriptive semantic summary of the expected
patterns that can be fed into a deep learning engine
to learn to discriminate and find new patterns accord-
ing to certain specified criteria. In our current

d[Online]. Available: https://www.imdb.com/interfaces/

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

experimentation with a variety of datasets, the most
naturally detected patterns include: tree forests,
cliques, bicliques, and hierarchical compositions of
these basic patterns.

Graph Cities and ML

In general, large graphs’ processing techniques help
for improving existing ML algorithms. Namely, for fil-
tering, cleaning, enriching, and merging data before or
during the training phase, large graphs are becoming
at the forefront in ML due to the efficacy of novel
representation learning methods, boosting prediction
performance in a variety of tasks. Representation
learning methods for graphs embed the nodes in a
low-dimensional real-valued space in order to apply
traditional ML methods. This work suggests Peel Value
Similarity as a “learning” task that deserves further
study.

Peel value similarity: Edge partitions, such as the
ones proposed here, associate with each node a vec-
tor profile of peel values encoding its level of participa-
tion in the edge decomposition. It is “natural” to ask
when pairs of nodes whose peel value vectors match
in a proportion greater than expected play “similar
roles” in the entire network. This approach offers peel
value vector profiles as “novel” embeddings that can
help predict “fake news” or “pandemic” spreading using
the decomposition of an underlying social interaction
network.

Graph-powered ML processes offer transparent
management of data sources, novel application of
algorithms to relational training datasets, storing and
accessing of mixed predictive models, identification of
the most reliable access patterns for providing predic-
tions, and, of course, graph visualization as a useful
tool to support analysis of multirelational data. There
is a need to perform studies that compare the state-
of-the-art representation learning methods with Big
Graph Visualization algorithms using “readability-"
based measures. It is not clear, what is the right cou-
pling between a representation learning method and a
“useful” visual abstraction.

The iterative edge decomposition partitions the edges
of a graph into fixed points of degree peeling; they are
in turn decomposed into graph waves and edge frag-
ments. They provide mechanisms that may help
assess the topological and statistical reasons that
explain the emergence of a large class of bipartite
graph-like patterns in very large graph datasets. These

May/June 2022

include traffic analysis derived from transaction data,
population migration, fraud detection, and viruses
spreading.

We introduced the 3-D representations of fixed
points based on their wave decomposition that resemble
buildings in a city, hence Graph Cities. A spiral arrange-
ment of the buildings is obtained from the size distribu-
tion of the fixed points. The Delaunay triangulation of
the building locations determines the graph city street
network. The size distribution of all the fixed points is
summarized by a graph city sculpture (see the “What is a
Graph City?" section). The city map provides an overall
access mechanism to any bucket, building, wave, and
fragment in our five-level edge decomposition.

Dense bipartite graph-like patterns have been pro-
posed as an abstract formalization of “concepts” in
the work of Wille."® Their identification in very large
datasets has defied computation. Nevertheless, Graph
Cities offer a promising approach to the efficient
detection of a large subclass of these patterns in
attributed graphs.

Streaming Graph Cities, composing global solu-
tions from local ones, and generalizing our approach
to Hypergraph Cities are tantalizing directions for
future work.

This work was supported by NSF under Grants
[1IS-1563816 and [1S-1563971. The authors would like to
thank Shaad Quazi for help with overall macrocity nav-
igation primitives and the anonymous referees for
valuable comments.

This version is an extension of our "best paper
award” work published' at Workshop Proceedings of
the EDBT/ICDT 2021 Joint Conference (March 23-26,
2021, Nicosia, Cyprus) on CEUR-WS.org.

An expanded version of this paper and a video dem-
onstrating our interface is available at https://rutgers.
box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9.

1. S.Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Ozsu,
“The ubiquity of large graphs and surprising challenges
of graph processing,” in Proc. VLDB Endowment, vol. 11,
no. 4, pp. 420-431, 2017.

2. J. Abello and D. Nakhimovich, “Graph waves," in Proc.
3rd Int. Workshop Big Data Vis. Exploration Anal.
EDBT/ICDT, 2020.

3. J. Abello and F. Queyroi, “Fixed points of graph
peeling,” in Proc. IEEE/ACM Int. Conf. Adv. in Soc.
Netw. Anal. Mining, 2013, pp. 256-263.

IEEE Computer Graphics and Applications

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

63

https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9
https://rutgers.box.com/s/ms39u7z4a93lidv7av0zi8wadtwgdis9

MACHINE LEARNING APPROACHES IN BIG DATA VISUALIZATION

1.

12.

13.

15.

64

P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants. New York, NY, USA: Springer, 2012.
J. Abello, F. Van Ham, and N. Krishnan, "ASK-

graphview: A large scale graph vis. system,” [EEE Trans.

Vis. Comput. Graphics, vol. 12, no. 5, pp. 669-676,
Sep./Oct. 2006.

Y. Zhang, Y. Wang, and S. Parthasarathy, “Visualizing
attributed graphs via terrain metaphor,” in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2017, pp. 1325-1334.

V.Yoghourdjian, T. Dwyer, K. Klein, K. Marriott, and M.
Wybrow, “Graph thumbnails: Identifying and comparing
multiple graphs at a glance,” IEEE Trans. Vis. Comput.
Graphics, vol. 24, no. 12, pp. 3081-3095, Dec. 2018.

K. Van Koevering, A. Benson, and J. Kleinberg,
"Random graphs with prescribed k-core sequences: A
new null model for network analysis,” in Proc. Web
Conf., 2021, pp. 367-378.

N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua,
“Parallel algorithm for core maintenance in dynamic
graphs,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst., 2017, pp. 2366-2371.

. V. Batagelj and M. Zaversnik, “Fast algorithms for

determining core groups in social networks,” Adv.
Data Anal. Class., vol. 5, no. 2, pp. 129-145, 2011.

A. Arleo, O.-H. Kwon, and K.-L. Ma, “GraphRay:
Distributed pathfinder network scaling,” in Proc. IEEE
7th Symp. Large Data Anal. Vis., 2017, pp. 74-83.

N. Veldt, A. R. Benson, and J. Kleinberg, “The
generalized mean densest subgraph problem,” 2021,
arXiv:2106.00909.

R.Jin, N. Ruan, S. Dey, and J. Y. Xu, “SCARAB: Scaling
reachability computation on large graphs,” in Proc. Int.
Conf. Manage. Data, 2012, pp. 169-180.

. W. L. Hamilton, R. Ying, and J. Leskovec,

"Representation learning on graphs: Methods and
applications,” IEEE Data Eng. Bull., vol. 40, no. 3,

pp. 52-74, 2017.

E. Angel and E. Haines, “An interactive introduction to
WEBGL and three.JS," in Proc. ACM SIGGRAPH
Courses, 2017, pp. 1-95.

|IEEE Computer Graphics and Applications

16. T.H.Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. Cambridge, MA,
USA: MIT Press, 2001.

17. J. Leskovec and A. Krevl, “SNAP datasets: Stanford
large network dataset collection,” Jun. 2014. [Online].
Available: http://snap.stanford.edu/data

18. R.Wille, “Concept lattices and conceptual knowledge
systems,” Comput. Math. Appl., vol. 23, no. 6-9,
pp. 493-515, 1992.

19. J. Abello, D. Nakhimovich, C. Han, and M. Aanjaneya,
"Graph cities: Their buildings, waves, and fragments,”
in Proc. EDBT/ICDT Workshops, 2021.

JAMES ABELLO is the director of the Rutgers Computer Sci-
ence master program, Rutgers University, Piscataway, NJ,
08854, USA. He is a permanent member of DIMACS. Contact
him at abello@dimacs.rutgers.edu.

HAOYANG ZHANG is currently working toward the Ph.D. degree
with Rutgers Computer Science Department, Rutgers University,
Piscataway, NJ, 08854, USA. He is the corresponding author of
this article. Contact him at hz333@scarletmail.rutgers.edu.

DANIEL NAKHIMOVICH is currently working toward the
Ph.D. degree with Rutgers Computer Science Department,
Rutgers University, Piscataway, NJ, 08854, USA. Contact him

at d.nak@cs.rutgers.edu.

CHENGGUIZI HAN is currently working toward the Ph.D.
degree with Rutgers Computer Science Department, Rutgers
University, Piscataway, NJ, 08854, USA. Contact her at

chengguizi.han@rutgers.edu.

MRIDUL AANJANEYA
Computer Science Department, Rutgers University, Piscataway,

is an assistant professor at Rutgers

NJ, 08854, USA. Contact him at mridul.aanjaneya@rutgers.edu.

May/June 2022

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2022 at 22:28:01 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

