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Abstract— This work proposes a robot task planning
framework for retrieving a target object in a confined
workspace among multiple stacked objects that obstruct
the target. The robot can use prehensile picking and in-
workspace placing actions. The method assumes access
to 3D models for the visible objects in the scene. The
key contribution is in achieving desirable properties, i.e.,
to provide (a) safety, by avoiding collisions with sensed
obstacles, objects, and occluded regions, and (b) resolution
completeness (RC) - or probabilistic completeness (PC) de-
pending on implementation - which indicates a solution
will be eventually found (if it exists) as the resolution
of algorithmic parameters increases. A heuristic variant of
the basic RC algorithm is also proposed to solve the task
more efficiently while retaining the desirable properties.
Simulation results compare using random picking and
placing operations against the basic RC algorithm that
reasons about object dependency as well as its heuristic
variant. The success rate is higher for the RC approaches
given the same amount of time. The heuristic variant is
able to solve the problem even more efficiently than the
basic approach. The integration of the RC algorithm with
perception, where an RGB-D sensor detects the objects as
they are being moved, enables real robot demonstrations
of safely retrieving target objects from a cluttered shelf.

I. INTRODUCTION

Robotic manipulation has the potential of being inte-
grated into daily lives of people, such as in household
service areas [1], [2]. A useful skill for such household
settings involves the retrieval of a target object from
a confined and cluttered workspace, such as a fridge
or a shelf, which may also require the rearrangement
of other objects in the process. In this context, it is
important to consider how to safely retrieve objects
while minimizing the time spent or the amount of pick
and place operations, so as to assist humans efficiently.

One of the challenging aspects of these problems that
requires explicit reasoning relates to heavy occlusions
in the scene, as the sensor is often mounted on the robot
and has limited visibility. These visibility constraints
complicate the task planning process, as rearranging
one object can limit placements for others and can
introduce new occlusions. Moreover, real-world scenes
in household setups are often unstructured and involve
objects with complex spatial relationships, such as ob-
jects stacked on each other.
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Fig. 1. (Top) Setup for the real demonstration using an RGB-D
sensor, robotiq gripper, and Yaskawa Motoman robot to retrieve the
target bottle. (Bottom Left) The camera view in which objects are
occluded. (Bottom Right) The corresponding voxel map.

Many previous efforts on object retrieval have fo-
cused on cases where blocking objects are extracted
from the workspace [3], [4], which simplifies the chal-
lenge as it does not require identifying temporary
placement locations for the objects within the confined
space. In-place rearrangement has been considered in
some prior efforts [5]. While this prior method is
efficient, it is not complete as it limits the reasoning
on the largest object in the scene to analyze object
traversability [4]. Alternatives use machine learning to
guide the decision making [6], [7], [8], which is an
exciting direction but does not easily allow for per-
formance guarantees, such as resolution completeness.
Setups where object stacking arise have received less
attention and most solutions that do consider stacking
are dependent on machine learning for reasoning [9],
[10], [11]. Some works have proposed testbeds [12] that
can help evaluate solutions in this domain.

This work focuses on object retrieval in clutter where
occlusions arise and objects may be initially stacked
under the assumption of known object models (e.g.
Figure 2). It aims at a theoretical understanding to show
the algorithm has safety and RC guarantees. A heuristic
variant improves the practical efficiency. Key features
of the proposed RC framework are the following:
• it employs an adaptive dependency graph data



structure inspired by solutions in object rearrange-
ment with performance guarantees [13] that express
a larger variety of object relationships than previ-
ously considered (namely occlusion dependencies);
• it computes the occlusion volume of detected ob-
jects as a heuristic to inform the planning process;
• it reasons about the collision-free placement of
objects in the confined workspace efficiently by uti-
lizing a voxelized representation of the space;
• it achieves RC (or PC) depending on the implemen-
tation of the underlying sampling subroutines;
• it provides an early termination criterion when a
solution cannot be found for the given resolution.
Simulation results, using a model of a Yaskawa

Motoman manipulator for rearranging objects on a
tabletop as shown in Fig. 1, evaluate the proposed RC

framework against a baseline using random picking
and placing operations. Both variants of the RC reason
about object dependencies. One doesn’t use heuristics
and one is heuristically guided while retaining RC.
Both of the RC approaches outperform the baseline.
The heuristically guided solution is able to solve the
problem more efficiently than the basic RC solution. The
integration of the proposed approach with perception,
where an RGB-D sensor detects the objects as they are
being moved, provides real robot demonstrations of
safe object retrieval from a cluttered shelf.

II. RELATED WORK

Some works on object retrieval rely on geometric
analysis of object occlusion [3], [4]. They provide the-
oretical insights but frequently do not limit actions to
in-place rearrangement of blocking objects. Specifically,
one method constructs a dependency graph taking into
account objects that jointly occlude a region and objects
that block others [3]. The occlusion volume is used
to estimate belief regarding the target object position
and helps to construct an optimal A* algorithm. An
alternative constructs a Traversability graph (T-graph)
[4], where the edges encode if the largest object in
the scene can be moved between two poses. It then
constructs an algorithm to extract the target object,
but is limited as the traversability edges are too con-
straining. The POMDP formulation is popular for the
task [14], [15], which allows the application of general
POMDP solvers. The POMDP formulation was also
adopted by the work that formalizes object retrieval in
unstructured scenes as ”mechanical search” [16].

Alternatives rely on learning-based methods to solve
such challenges, such as reinforcement learning [6] or
target belief prediction [7], [9], [17]. They report good
performance but do not provide theoretical guaran-
tees given the black-box nature of the solutions. In
particular, a reinforcement learning solution [6] uses
the rendered top-down projections of the scene to
predict the target poses. A recent follow-up effort [7]
on previous work [17] estimates the 1D position belief

of the target object on the shelf via machine learning.
It then constructs a policy based on the distribution
change after applying pushing and suction actions. It
incorporates stacking and unstacking actions, where
object stacking is represented by a tree structure. Other
works such as [18] utilize learning for planning grasps
to greedily empty bins of complex and novel objects.

A related work [19] proposes a complete framework
to safely reconstruct all objects in the scene amidst
object occlusions. Nevertheless, object retrieval may not
require reconstructing all objects and requires a search
procedure that is more task-driven for efficiency. There
are also previous works [20], [19] that construct a vox-
elization of the environment to model object occlusions,
similar to the current work. This representation is used
to compute an object’s occlusion volume, which pro-
vides heuristic guidance. Object spatial relationships
are often represented by scene graphs [10], [11], or
implicitly in machine learning solutions [16], [21], [22].

What stands out in this work is that it proposes
a general template for a RC or PC approach to task
retrieval in occluded environments that only relies on
basic motion and perception primitives. This modular
nature allows for quick sim-to-real transfer and passive
performance improvement as the primitives are im-
proved over time. Furthermore, an efficient implemen-
tation is demonstrated utilizing a voxelized represen-
tation of the environment for quick collision filtering
of object placements as well as providing an effective
heuristic to rank object manipulations. Thus, the frame-
work enables effective in-workspace manipulation.

III. PROBLEM STATEMENT

Consider an environment with a set S = {o1, ..., on} ⊂
O of n objects for which there are available 3D models.
The objects are stably resting on a support surface.
Objects are allowed to be initially stacked and occlude
each other from the camera view.

The robot has one fixed RGB-D sensor at its disposal.
Discovered objects are those recognized given the ob-
servation history. An objects is assumed to be recog-
nized once an image segmentation process recognizes it
as an individual object in the observed image. Similarly,
a perception method for detecting the target object
once observed is assumed. The region of the workspace
occluded by object oi at pose si is denoted as Oi(si).
Similarly the space uniquely occluded by object oi at
pose si, called the direct occlusion space, is denoted
as Õi(si). The proposed algorithms gradually removes
occlusions and recognizes objects. A motion planner is
used to plan pick-and-place actions.

While objects can start out stacked, they are not re-
stacked and are only placed on the ground surface
during actions. While objects can start out stacked, no
reasoning about stability and ability to re-stack objects
is considered. Thus, once an action to pick up a stacked
object is taken, that object will only be placed on the



ground surface. For further assumptions and required
properties of the motion planner see section V.

The objective for the object retrieval task is to de-
termine a sequence of pick and place actions in order
to discover and subsequently retrieve the target object;
the target need not be directly visible or pickable from
the robot’s sensors. The corresponding solution should
provide desirable guarantees: (a) safety, by avoiding
collisions with sensed obstacles and objects as well as
occluded regions, and (b) resolution completeness (RC)
- or alternatively probabilistic completeness, depending
on the implementation of the underlying motion plan-
ner, grasping process and object placement sampling.
The optimization objective is to minimize the number
of performed actions until the target object is retrieved.

IV. METHOD

The proposed pipeline is detailed in Algorithm 1.
First a voxelized representation of the scene and a
dependency graph are computed (lines 3,4,5), which
are detailed in subsection IV-A. The dependency graph
contains a belief state of the current scene based on
visibility and reachability constraints. All the sinks of
this directed graph represent likely pickable objects.
The ranks are described later (see subsection IV-C). If
the target object is pickable then it is retrieved and the
pipeline is terminated line 6. Otherwise, a placement is
planned (see subsection IV-B) one at a time for each ob-
ject in a shuffled order biased by the ranks (TryMoveOne
line 7). The first successful plan is executed.

If no placement is found for any of the pickable ob-
jects, then a fallback procedure is called to try and pick
one object and move it temporarily out of view of the
camera; the first successful plan is executed, the scene
is re-sensed, and a new placement is sampled for the
object or the object is simply put back at the same spot
(MoveOrPlaceback line 10). At this stage, the pipeline
could restart if a new object was discovered (lines 12-
15). Otherwise the same set of pickable objects are
tested for new placements in the scene (line 16). If these
two operations of “moving an object to look behind
it”(MoveOrPlaceback) followed by retrying to “move one
of the pickable objects to a new spot”(TryMoveOne)
fail for all objects, then the pipeline can return and
report failure for the current resolution (line 22). If the
sequence of operations succeeds, then the pipeline can
restart (line 19→ 2).

A. Voxel Map and Dependency Graph

A 3D occlusion voxel grid within the workspace
is constructed from RGB-D images. First the point
cloud (in world frame) is generated using the RGB-
D image and the inverse of the camera projection.
These points are down-sampled into a voxelization of
the scene. Given segmentation image information, each
object is associated with a portion of the voxel grid.
Object geometry is used to label voxels as occupied and

Algorithm 1 RC Pipeline(target)
1: failure← false

2: while failure = false do
3: space← UpdateVoxelsFromImage()
4: dg← DepGraph(space)
5: sinks, ranks← RankSinks(target, dg)
6: if target ∈ sinks then break

7: if TryMoveOne(sinks, ranks) = false then
8: failure← true

9: for sink ∈ sinks do
10: if MoveOrPlaceback(sink) = false then
11: continue

12: space← UpdateVoxelsFromImage()
13: if DidDiscoverObject(space) then
14: failure← false

15: break

16: if TryMoveOne(sinks, ∅) = false then
17: continue

18: failure← false

19: break

20: if not failure then
21: Retrieve(target)

22: return failure

remaining associated voxels as occluded. The occluded
regions of objects may intersect when jointly occluded.

The dependency graph is a directed graph where
each node represents a visible (or target) object and
a labeled edge (oi, oj, r) represents a relation r from
object oi to oj that necessitates oj to be picked and
placed before oi could be picked. Valid relations in this
work include “below”, “grasp blocked by”, and – for
the prediction of the target object – “hidden by”. See
Figure 2 for a sequence of such dependency graphs
generated during an example experiment.

Object x is defined to be “below” object y (x below−−−→ y)
if object x touches object y and the z-coordinate of the
center of mass of x is less than that of y. Note that this
isn’t guaranteed to capture all intuitive cases of one
object being below another for non-convex objects. This
relation is computed using object models and poses
given by the perception system.

Object x has its “grasp blocked by” y (x blocked−−−−→ y) if
there are no collision free grasp poses for object x and
the arm is in collision with y for one or more valid
grasp poses. (Grasp poses are sampled and tested by
inverse kinematics (IK) for discovered objects) Grasp
poses are sampled using inverse kinematics (IK) to
discovered objects. (or, if the grasping pose collides
with objects, an edge to each collided object is added)
If there exists a collision free grasp for an object, no
blocking edges are added; otherwise, an edge to each
object that has a collision with the arm is added. Note
that although this relation guarantees that the source
object blocks the target, it doesn’t capture all such
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Fig. 2. Images (1)-(6) show a simulated experiment from initial configuration to final one action at a time with corresponding camera
views in the top left. The corresponding generated dependency graphs transitioning between the images (1)-(2), (2)-(3), (3)-(4), and (4)-(5) are
shown in images (a)-(d). The colors of nodes corresponds with the objects in the scene and the red object (labeled ‘T’) is the target object for
the trial. The last graph between images 5-6 is not shown since it is trivial having no dependencies between any objects.

reachability dependencies. This however is not an issue
for completeness as Algorithm 1 will eventually try to
grasp all objects in the case of motion planning failure.

The target object t is possibly “hidden by” x (t hidden−−−→
x) if the target isn’t sensed in the scene and object x is
touching the table. This relation is used to keep track
of the belief state of where the target is. Each edge
is assigned a probability based on the volume of the
occluded space behind object x (see subsection IV-C).
B. Placement Sampling

A valid placement is one that doesn’t collide with an-
other object or any undiscovered area of the workspace.
Instead of randomly sampling x,y coordinates for an
object and checking for collision at that point, we create
a grid matching the horizontal extents of the workspace
and add a collision mask which is the shadow of the
object occupancy and occlusion voxel grid looking from
a birds eye view. This mask is then convolved with the
shadow of the object that is to be placed. The occupied
pixel indices indicate collision-free placements and are
converted to world coordinates. Object orientations can
be enumerated by rotating the object shadow.

C. Target Object Prediction

Intelligent object location prediction is achieved by
applying a heuristic which ranks the pickable objects
determined by the dependency graph (line 4 in Algo-
rithm 1). This is done by augmenting the dependency

graph edges with a weight p ∈ (0, 1] estimating the
probability for the relation oi

r−→ oj to be true. To rank
a pickable object, the sum of products of edge weights
of all simple paths between the target and the object
is computed. When sampling from the list of pickable
objects, this rank is used as a probability weight.

For the “below” relation p = 1 since object segmen-
tation is assumed to be reliable. For the “grasp blocked
by” relation p is equal to the fraction of total sampled
grasps for which that object is in collision with the
arm. Note, the weights of grasp blocking edges coming
out of any object need not add to one (hence don’t
truly represent probabilities) since the arm could be
colliding with multiple objects for any single grasp.
For the “hidden by” relation, the goal is to encourage
knowledge gain of the environment. This is done by
normalizing the volume of the direct occlusion region
of each stack of objects and assigning the inverse as the
probability estimate that the target is hidden behind
each stack. This heuristic biases the pipeline towards
discovering large volumes of occluded workspace.

From an algorithmic point of view, there is techni-
cally no reason to normalize the output of the heuristic,
however, representing the heuristics as probabilities
is insightful since - without prior knowledge - the
probability the hidden object to be in a larger volume
is larger than the probability of it being in a smaller
volume. Furthermore, modeling the dependency graph



edges with probabilities as opposed to non-normalized
weights is conducive for exploring future work which
might seek to combine the probabilities based on the
proposed volumetric-heuristics with priors based on
the semantics of the objects involved or from an ad-
ditional human instruction (see section VII work).

V. RESOLUTION COMPLETENESS

Given a (formally) complete motion planner (finds
solution in finite time if exists), a continuous space
grasp sampler, and continuous placement sampler, the
proposed pipeline would be PC Given a RC motion
planner, a discrete space grasp sampler, and discrete
placement sampler, the proposed pipeline would be RC.

To show the PC or RC of the algorithm proposed
in this work, a simpler version of the algorithm is
analysed first. Without loss of generality, the actual
proposed algorithm will be likewise proven complete.

Consider a much simpler algorithm that, at every
iteration, tries to pick an object at random and, if is not
the target object, subsequently place it randomly in the
explored region of the workspace; call this RAND-ACT.

Lemma 5.1: RAND-ACT is PC or RC (depending on the
planning and sampling subroutines).

Proof: At every iteration, RAND-ACT attempts to
perform a random action. Consequently, RAND-ACT ex-
ecutes a random walk on the space of all actions. Since
pick and place actions are reversible, if a sequence of
such valid actions exists, this algorithm will eventually
perform it (or an augmented version of the sequence -
i.e. placing an object back to where it was picked from)
in the limit (or finite time for RC subroutines).

Corollary 5.2: Algorithm 1 is PC or RC (depending
on the planning and sampling subroutines)).

Proof: Indeed Algorithm 1 is really a fancy im-
plementation of RAND-ACT. At every iteration, the
dependency graph is used to identify (and heuristically
rank) the currently pickable objects. One of these is
chosen randomly for a pick and place action via the
TryMoveOne subroutine. The MoveOrPlaceback subrou-
tine acts as a fallback in case there are no new discov-
ered placements found; it delays placement sampling
till after the environment is re-sensed with the picked
object moved out of the way. Notice further, that even
if the pickable objects are sampled weighted according
to their ranking rather than uniformly, the action space
is still explored entirely because each action has a
positive probability of being sampled. Thus, w.l.o.g.
Algorithm 1 is PC or RC as well.

Failure Detection: The implementation in this work
uses the RC approach. In addition to RC, Algorithm 1
takes a step closer towards achieving general com-
pleteness by actually detecting certain unsolvable cases
within the completeness constraints of the motion and
sampling subroutines. The detectable unsolvable in-
stances for which the algorithm will return failure in
finite time are as follows.

• No object can be grasped. This could happen if two
objects each block the grasp of the other.
• No objects can be placed anywhere (except its cur-
rent spot). This could happen in a highly cluttered
scene where the only valid placement for each object
is to just put it back where it was.

Thus, Algorithm 1 has stronger guarantees than RC but
is not formally complete since it may run forever by
juggling two objects between two placements.

A Caveat: A fundamental assumption in the argu-
ment presented is that actions are reversible. This is
not always true in practice depending on the imple-
mentation of the sampling subroutines. And indeed,
the implementation of the placement sampling process
proposed in subsection IV-B implies irreversible actions
for scenes with stacked objects because it does not
consider the possibility of re-stacking objects. Thus, the
proposed pipeline (as implemented) is only resolution
complete on the any sub-task where the objects are no
longer stacked. Implementation of stacking actions is
planned for future work.

VI. EXPERIMENTS

Simulated experiments and the real demonstrations
are performed with the Yaskawa Motoman sda10f, with
a robotiq 85 gripper attached on the right arm.

The simulated trials are randomly generated by
picking random objects, dimensions, and collision-free
placements within the specified workspace. 20 scenes
with each of 6, 8, 10, 12, and 14 objects were used, all of
which contain objects occluded from the camera. Each
of the 100 trials is a unique scene. The target object in
each scene was selected to be the hidden object with
the most objects above it, if any.

All tested algorithms were given 20 minutes to run
before being terminated. A trial run is considered
successful only if the target object was retrieved within
the time limit. Discovering but failing to pick up the
object was still considered a failure.

Comparisons of the success rate, number of actions
for solved trials, total run-time for solved trials, and
number of timed out trials are shown in Figure 4 for 3
algorithms. The algorithms compared are the baseline
random action approach (blue in figure), the proposed
resolution complete pipeline without the object ranking
heuristic (orange) and with it (green). For the resolu-
tion complete approaches timing-out is not the only
failure mode since they could detect certain infeasible
problems (section V: Failure Detection)

The success rate of the resolution complete ap-
proaches is higher than that of the random baseline.
Although its not directly apparent from the plotted
results in Figure 4, the resolution complete approaches
(as expected) always found a solution when the random
baseline found a solution; however in one such trial
the resolution complete approach without heuristic
exceeded the 20 min time-limit. It is also clear that
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Fig. 3. Execution on the real robot : (a) Initial scene where the red bottle is hidden. (b) The robot moves the yellow bottle, which occludes
the most space. (c) The robot moves the second yellow bottle, revealing the red bottle. (d and e) The robot moves the green and the blue
bottles to reach the red bottle. (f) Target is now reachable.

the heuristic approach has better success than the non
heuristic approach even though they are both complete.
Looking at the data for timed-out experiments, it be-
comes clear that the increased success of the heuristic
approach is due to timing out less frequently. This
also coincides with the data showing that the heuristic
approach overwhelmingly finds solutions faster and
with fewer object manipulations. In fact, while the
non-heuristic RC approach started timing out linearly
with increase in the number of objects, the heuristic
approach had virtually no issue until the scenes got
very cluttered with 14 objects.

It is clear that for all methods, success rate starts
dropping off significantly at around 14 objects. This
marks the difficulty level for the given industrial Mo-
toman robot and the workspace. A more compact robot
with a streamlined end-effector (such as the “bluction”
tool [7]) could scale to more cluttered scenes.

Fig. 4. On top are shown the graphs of the: success rate (left) and
number of timed out trials (right). On the bottom are the number
of actions and the total runtime for the subset of trials in which all
algorithms were successful.
A. Integration with Perception & Real Robot Demonstration

The pipeline is directly transferable to scenarios on
the real robot to retrieve a target red bottle from a
cluttered shelf. Due to time constraints, a simple imple-
mentation of a perception system is used which only
segments and detects colored cylinders without stack-
ing. Despite the simplifications, a scene with significant
object occlusion is still demonstrated with a successful
retrieval. The proposed pipeline (with heuristic) is run
online and communicates with the robot controller and
the RGBD camera for execution and sensing. The cam-
era extrinsic matrix is estimated by a classical robot-

camera calibration procedure using ArUco markers
[23]. For object recognition, the perception component
is implemented via plane fitting, DBSCAN segmenta-
tion [24], and cylinder fitting using Open3D [25]. The
plane fitting algorithm extracts the boundaries of the
workspace, which is used to construct the collision
geometries in MoveIt [26]. The inliers of each seg-
mented cylinder are used to produce the segmentation
mask for the RGBD image, which is used to label
occlusion correspondence for each object. To ensure
safety, additional cubic collision geometries are added
to the planning scene to avoid collisions between the
robot and the camera. 1. Extensive experiments of the
proposed pipeline were not performed on the real
robot but the demonstration presented was performed
a few times and the pipeline was observed to have
qualitatively similar performance as in simulated ex-
periments; however, calibration and perception issues
were observed to lead to pipeline failure.

VII. DISCUSSION
It’s worth mentioning that the physical execution

accounts for over 60% of time used for the trials.
This shows that there could be room for performance
improvement by performing scene perception asyn-
chronously, since a lot can still be sensed while the
robot is moving. Further performance improvement can
be found by parallelizing the planning of picks and
placements for multiple objects as well.

While this work applies heuristics for selecting ob-
jects based on the occlusion volume, additional infor-
mation regarding effective placements can also improve
practical performance. In order to solve a larger variety
of problems it would be useful to adapt the placement
primitive to allow placing objects on top of others when
there is limited space on the workspace surface.

Another direction is to integrate the task planner
with human instructions. For instance, it would be
helpful to use human language to identify the target
as well as influence the search at some regions over
others. Additional heuristics can also be obtained from
semantic reasoning of the scene when objects of the
same category tend to be placed closer [27]. Since
current experiments only include simple geometries,
such as cylinders and rectangular prisms, future work
can investigate more complex objects where state-of-
the-art perception algorithms are necessary. This would
also be necessary for realistic human-robot integration.

1Videos can be found at https://sites.google.com/
scarletmail.rutgers.edu/occluded-obj-retrieval

https://sites.google.com/scarletmail.rutgers.edu/occluded-obj-retrieval
https://sites.google.com/scarletmail.rutgers.edu/occluded-obj-retrieval


References

[1] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez,
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